
t . .

Software Technology for
Adaptable Reliable Systems

(STARS) Workshop

April 9-12 1985

F o-

COro

& S

Naval Reseaicli Laboratory F
Washington, DC 20375-5000

Approved for public relea~se. distribuion .nIa d.~

If 9 "6

Softare echolog fo

Softwaressio Tehnloy o

NTIS GRA&I
DTIC TAB
Unannounced 1
Just ificat ion

By
Distribut ion/-

Availability Codes
Avail and/or

Dint Special

UAL,

:CT3

Naval Research LaboratoryJA5Q O
Washington, DC 20375-5000 F

F
.. 2 ;.2.. PRE.FACE

Commerce Business Daily

WORKSHOP ON REUSABLE COMPONENTS OF APPLICATION SOFTWARE

The Software Technology for Adaptable Reliable Systems (STARS) Project of the Office of the
Secretary of Defense seeks sources of information and expertise in the building of mission critical "f'-'
applications software. Component specification, building, testing, maintaining and reutilization
are of interest. With the promulgation of Ada as a single High Order Language OL build
future applications within the three services, there exist new opportunities for reuse of software. , -..-.
Reuse can reduce software system development time and maintenance costs, and improve reliabil-
ity. The Applications Tri-Service Working Group with the STARS project is sponsoring a four-
day, workshop at the Naval Research Laboratory in March 1985 to discuss and present summar-
ized material on the following issues and questions:

(1) Specification/Design: Evidence of usefulness of methodologies and standards for writing reus-
able software components. Attach user manual of the methodology or standard discussed.

(2) Reusable Component Definition: What constitutes a component? Are documentation, source
text, regression test and data a sufficient set? How is related information bound and kept in syn-
chronization to components? How are security problems resolved? (Specific questions include:
How does one avoid contamination of a component by classified data when passed from one
environment to another? How can we avoid/detect trojan horses or planted time triggered
events?

(3) Validation of Software Components: What manual and automated tools are now effective? At ,N

what level must tools be run to be effective? What is reasonable for a user to expect and what
can be provided for a user to be confident in a reusable component? Are documentation and test
results efficient to validate the components?

(4) Library experience: Discuss item storage, cataloging, configuration management (personnel
security, cost, logistics, remote and local access, change and errata notification). Identify applica-
tion supported, e.g. Weapon System, C31, space and the length of experience.

(5) Automated part composition: State issues and solutions for prototyping and delivery of opera-
tional systems, manual and automated techniques.

(6) Logistics of organizational reuse of software and as government furnished material, and prob-
lems encountered with data rights and license arrangements, and user liability claims.

(7) Encouraging deposits: Discuss company and employee incentives to encourage the submission
of or to provide access to reusable components.

(8) Ada experience: Discuss special problems encountered in the use of Ada. Relate to the use of
Ada, or recast existing tools and experiences in the Ada language. Interested firms, and individu- e..'

als are invited to respond with name and resume of candidates to participate in the workshop.

*.-,.-. *, _ ., , ." .

STARS Applications WorkAhop
April 9-11 1985

Issue Paneb and Ink Ie..

" i. Part67axonomy/Requirements.

ii. I. Incentives)

M. Library

IV. ,t System/Design/Integration with Reusable Parts < .

* V. ~ Metrics0

The issues are broken down by the subject area for each of the panels. The intent of these issues
is to provide guidance to the panel: the panel is free to add, delete or modify these in the work
sessions.

I. Parta Taxonomy and Requirements .4

In the opening sesion, terms were given in several perspectives. In order for future corn-
munication to be productive, we need to decide upon a common terminology, particularly the
terms package, component, part, and piece (and similar decompositions). Once determined, what

n t guide to the production of that thing should be used (if any)? Deliberations must include
- definitions and specifications that can allow knowledge-based access of pieces and ultimate pull

for prototyping and automated parts composition. Consideration would be given to possible func-
tion migration between SW/FW/HW categories.

A. Define terms and provide rationale for the selection:

a. the collection of source code, design, requirement, etc.
to perform a function

b. Individual items such as the source code or a document

B. What is to be included in each definition and what information is needed for each of these

items to reuse software at each level of the definition?

C. The SDS DID's are soon to be mandated. Can parts of them be used as guides for the
production/description of the lowest level items? At higher levels?

(These will be available in the meeting area)

D. Are there guides in industry that should be considered a replacement or modifications to the
SDS DID's?

E. If you were to acquire a product from another company (reusable piece), do you need informa-
tioa not covered by an SDS DID?

F. A primary focus is Ada but it is possible that other languages must be uncovered for repair and
communicated for elimination of rediscovery costs. What are effective means to perform these
functions?

iv

" '- - ,. .. ._.../ . : .. _ . , -,. _ . * , -. - , ,- .- - . ., - -. .. -. . . . - .-

-; -~ EL Roum Ineativesi

We need to reuse existing software to allow DOD and industry to focus their resources on
developing new extensions and more advanced systems, tools and concepts. What motivators can
DOD and Industry management provide to the performers to encourage reuse?

A. What contractual actions can aist this process? Are there examples of clauses that have been
inserted that have been successful? Needing to learn from our errors, are there any that demo-
tivated the performers?

B. What internal incentives have been motivators? Can they be extended?

C. Are there funding initiatives that could be established that might serve as incentives? For
example bonuses at the end similar to schedule/ quality bonuses used today? Have they met with
success? If of use, what contract language is appropriate?

JI. Libr7"'

This group must address the repository issues of holding the reusable items, worrying about CM f
and maintenance issues, and serving the users of it.

The list of issues are a starting point for discussion. We expect that internal panel deliberations
may modify this set significantly.

A. What should be the acceptable criteria for a new item to enter a repository? Who should do it?

B. Should we consider anything but system-high security? If we do so, how much burden is being
placed on the user in finding needed items? Of special interest is how to avoid data pollution, tro-
jan horses and time bombs in code?

C. What information must be available to the potential user? (we expect some interaction with
the definition panel here)

D. How can software licenses and proprietary information be addressed in the context of reuse and
life-cyci, maintenance constraints?

E. Some believe that a library should be centralized and some that it should be distributed. List
the pros and cons of each approach and for the distributed approach, suggest the partitioning
approach for distribution, i.e. by ownership, application, etc.

F. Of the cataloging methods used today, what parts are successful and what parts have proven
to be problems (if problems were resolved, how?)

G. What the cataloging method should STARS approach? Is there a starting point that can be
adopted or modeled after?

H. What are recommended means for library access, distribution of holdings?

V

-"

I. Suggest alternative approaches to the maintenance of items in the library? Consideration is
needed on handling of problem reports, fixing priorities, financing, etc.

J. What are strengths and weaknesses of DOD and Industry products (at least descriptions
thereof) in the same library/cstalog or access path?

K. What part can propriatory software play in application system building? What factors guard
the propriatary nature of these items? Is there a point at which they can be released for general
use? Is there a motivator that would allow this to occur earlier (eg. a high fee paid in the initial

". years to seed new innovations)?

-". IV. System Design/Integration with Reusable Items

To provide information to the Methodologies Area and to assist us in the guide to reusable items,
we would like to assess the current status and determine future approach.

A. What approaches are being used today and what are the good and bad 'lessons" learned'? .-.

B. For those who are addressing reuse, have there been any changes in methodology to help pro-
mote or hinder reuse?

"" C. Are there special attributes required to be accessed to assist in the integration of reusable items
* with new items? Are these different depending on application type, e.g. missiles, command and

control, etc.

* D. Are there unique requirements to the development environment for a specific application that %!

I differ across applications? Take into account a basic environment, coupling to the target environ-
ment, exteral simulators and stimulators, etc. Take a couple applications and work out the
requirements.

E. What applications areas are believed to be the greatest opportunities for cost savings thru resu-
ability (consider both software items and environment items and tools)?

F. What part composition systems are finding success? Where do the problems lie? Is there any
sufficiently advanced to be adopted as a baseline for evaluation in the STARS Project?

G. What activity is being focused on knowledge based access of parts? Is it applicable to only
selected applications or of general use? What are basic rules to apply?

H. What part composition systems exist and are there common denominators that lead to cause
for guidance for partitioning rules in building future systems and thus affect resuable parts? (be
sure to identify existing system so that the scope of the result is understood)

V. Metrics

We know that we must measure items and communicate the 6.,odness to potential users. Known
factors are how fast it is, how much space it takes, how tested is it, etc. What should be known
and what would you as a user have to be assured of in order to look closer? - -

A. What characteristics need to be measured? ". "

vi

..I .*D~*- .~ ~bA2 .i.

B. For each characteristic, can a good, better, best criteria be aigned (or some other consumer

index?)

C. What functional and historical criteria is relevant - what could make it believable?

D. If DOD were to give incentives to contractors to develop reusable parts, how could we measure
success? Are there measures that can be applied directly or must it be a function of historical
usage?

E. What metric values would be required for a part to be acceptable from the standpoint of inclu-
simon of regression tests/data, etc? For example, for systems require high reliability, must the test-ing cover 100% of the paths?

.%*

vii

* * ... *r-. . . .W. .-t. '

PREFACE H*o ON.........................NT ... l

PROJECT REQUIREMENTS FOR REUSABLE SOFTWARE 1.............................

MACO ISUS I RESEFRO AREAL PROJECT.. 55

Thomas D. Ariwiht I
WORKSHOP ON REUSABLE COMPONENTS OF APPLICATION SOFTWARE................... 75

Tom Bowen

A PHASED APPROACH TO ADA PACKAGE REUSE .. 83
Dr. Bruce A. Burton and Mr. Michael D. Broido

REUSABLE COMPONENT DEFINITION (A TUTORIAL)..99
Rodney M. Bond

AUTOMATED PARTS COMPOSTON.. 107
R.M. Bleniak, L.M. Griffin, and L.A. Trip

~ A DISCUSSION OF ADA EXPERIENCE AT GENERAL DYNAMICS DATA
SYSTEMS DIVISION WESTERN CENTER ... 129

John 1. DaGraca

RAPID PROTOTYPING WITH REUSABLE SOURCE CODE ... 145
Elaine frankowscl, Mark Spnrad and Paul Slachour

MODELING A REAL-TIME EMBEDDED COMPUTER SYSTEM USING ADA:
SOME PRELIMINARY RESULTS .. 155

Frank L. Friedman and Paul A. T Wojfgang

A PROCESS VIEW FOR REAL-TIME SYSTEMS ... 177
Nancy Giddings

*VARIATIONS OF A REUSABLE SOFTWARE COMPONENT .. 195
Dr. J Kaye Grau

SOFTWARE VALIDATION OF SIGNAL PROCESSING SYSTEMS ANDjITS IMPACT ON REUSABILITY ... 209
Michael R. Miller, Hans L. Hiabereder, and L.O. Keeler

REUSABLE SOFTWARE IN SIMULATION APPLICATIONS... 227
Frederic D. Heibrinner

REUSABLE SOFTWARE-A CONCEPT FOR COST REDUCTION 243 ' .

Christine M. Anderson and Marlow Henne

A UNIFIED SYSTEMS ENGINEERING APPROACH TO SOFTWARE REUSABILITY........... 271
Ted Hobson

p viii

SISSUES IN REUSING SOFTW ARE ... 297
ISSUES ihard A. Howey and Lynn M. Meredith

SEARCHING AND RETRIEVAL FOR AUTOMATED PARTS LIBRARIES 321
John D. Litke

REUSABLE SOFTWARE IMPLEMENTATION PROGRAM:
RESPONSE TO REQUEST FOR INFORMATION ... 335

John G. McBride

A SOFTWARE DEVELOPMENT METHODOLOGY FOR REUSABLE COMPONENT 361
Ron McCain

PRELIMINARY TECHNICAL REPORT-STUDY RESULTS ... 385
Dr. Daniel G. McNicholl and Christine M. Anderson

ENCOURAGEMENT OF SOFTWARE REUSABILITY ... 413
George W. Mebus

COMPOSITION OF REUSABLE SOFTWARE .. 429
John A. Mellby

" MICRO ISSUES IN REUSE FROM A REAL PROJECT .. 443 s -,

Goeffrey 0. Mendal

ACHIEVING REUSABILITY OF ADA PACKAGES ... 521
Susan Mickel

SOFTW ARE REUSABILITY ... 537
J.E. Mortison

ADA* TECHNOLOGY OBJECTIVES AND PLANS (ATOP) .. 599
Norman S. Nise

WORKSHOP ON REUSABLE COMPONENTS OF APPLICATION PROGRAMS 637
A. Frederick Rosene

SPECIFICATION-BASED SOFTWARE ENGINEERING WITH TAGSOTM 663
G.E. Sievert

SOFTW ARE QU ALITY .. 683
Raghu Singh

FUNDAMENTAL TECHNICAL ISSUES OF REUSING MISSION CRITICAL
APPLICATION SOFTW ARE .. 707

J. G. Snodgrass

RESPONSE TO THE TRI-SERVICE WORKING GROUP WORKSHOP
REUSABLE COMPONENTS OF APPLICATION SOFTWARE ... 721

J.S. Squire

BOEING MILITARY AIRPLANE COMPNAY (BMAX) ... 733
Earl T Starrzman

ix

. .. ;.....,.............-..-... ,.......- . •."."...

,,..%.... _-. '"...... , .. " %.. ",..

A DISCUSSION OF PROTOTYPING IN THE SOFTWARE
DEVELOPM ENT CYCLE .. 757

MXK Thomson

A DISCUSSION OF METHODOLOGIES FOR THE DEVELOPMENT OF
REUSABLE SOFTW ARE .. 773

M.K. Thomson

INFORMATION PACKAGE FOR WORKSHOP ON REUSABLE COMPONENTS
OF APPLICATIONS SOFTWARE .. 799

Dr. Gregg Van Volkenburgh

REUSABLE SOFTWARE IMPLEMENTATION TECHNOLOGY REVIEWS 823
. Grabow, W. Noble, C. Huang, and J. Winchester

W ORKSHOP PAN ELS ... 855

p.-

..'-:- .i 2."- , .2 1.:- :i.2I - .2.,.- "-'-',-.';,., . - - --. "-". , ' , . .' " , . . , , -,

........... L

PROJECT REQUIREMENTS FOR
REUSABLE SOFTWARE

Lyle A. Anderson and Sivey _. Hudson

Presented at the STARS
Workshop on Reusable Software

April 9, 1985

Abstract

Developing software either for future reuse or using existing software establishes definite pro-
ject management requirements. These requirements are quite different from those imposed by
"from scratchon time software development. A software development tool, AQDS, was developed
to meet those requirements as they were revealed during the automated development of
TOMAHA WK Missile Launch Control Group software.

This paper is based on the work performed for the Naval Surface Weapons Center,
Dahlgren Laboratory under contract N60921-82-C-A078 from December 1981 through March

1985. We were responsible for developing major portions of the Program Performance Specifica-

tion (PPS), Program Design Specification (PDS), and computer program (code) for the

TOMAHA WK AN/SWG-3 Launch Control Group.

Introduction AQDS demonstrated its ability to increase
software quality and achieve heighted produc-

Slides used during the STARS tivity in all phases of the project.
Workshop presentation have been included
in our submission to the proceedings and AQDS Used for AN/SWG-3 Launch Con-
may be referred to for specific illustrations. trol Group

Based on our AN/SWG-3 project For the TOMAHAWK Weapon Control
ex,- :ence, we believe that it is important for System AN/SWG-3 Launch Control Group
reusable software to provide benefits to its (LCG) Program Performance Specification
users at every stage of development. Users (PPS), AQDS was used, primarily, to
will resist any system that only promises improve the quality of the document. In
gains in future maintenance or reuse. addition to automated production of "pretty

print" text, it guaranteed that the
The Naval Surface Weapons Center, Input/Output tables of the Detailed Require-

Dahlgren Laboratory supported the develop- ments sections matched the signals men-
ment of AQDS because they believed that tioned in the text of the processing para-
the proposed features of the tool would graphs. It also promoted consistency of sig-
enable them to meet I nearly impossible pro- nal naming between processing sections, and
ject schedule by eliminating one of the provided a global data dictionary and cross-
phases of software development. AQDS was reference list which accurately reflected the
designed to produce design and code from text.
the same source, thus eliminating the code
phase of development. For the Program Design Specification

(PDS). and code, AQDS provided improved
Benefits from using AQDS were real- quality and increased productivity. The same

ised from the requirements phase through AQDS source was used to produce both the
design, code, testing and finally maintenance, detailed requirements sections of the PDS

Ir
.'.'

........................
- . " °.l

and the code. Three distinct versions of the source of information. It also had to provide
code were produced: VAX FORTRAN 77, flexibility in output formatting to represent
Rolm FORTRAN 66, and Rolm RATFOR. the information in the myriad formats
The latter was the target language for the required. (";
project. The other two were used in debug-
ging the design and unit testing the code. The tool was also used to develop itself

using the bootstrap method. Each version
After the design was approved at the produced its successor. This means that it

Critical Design Review (CDR), AQDS pro- benefitted from all the things to be gained
duced from the Program Design Language from automated software development.
(PDL) approximately 132,000 software lines Doing it this way also allowed the developer a,

of code (SLOC) in about a 72 hours of CPU to be the first user of the tool and eliminated
time on a VAX 11-780. a historically significant source of conflict

between applications users and support per-
The completed system cycled the first sonnel.

time. There were, however, design problems
in about 10% of the software modules. Basic Concepts and Their Origins
When these wee corrected in the AQDS
source database, both the design and the AQDS was created to support a real .3
code were updated simultaneously. project in "real time." This allowed us to dis-

cover real project needs and gave us the
The Initial Operational Capability (IOC) opportunity to monitor the performance of .1-

version of the AN/SWG-3 completed the enhancements. Many features were added to
acquisition milestone, DTIIe testing, in Janu- the tool "just-in-time" to meet the project's
ary 1985 and is scheduled for OPEVAL this needs.
summer. The "Block 1" upgrade, which is
currently underway, will be constructed from Because we needed to invent as little
the IOC version database. Only those parts "new" code as possible, we wanted to use
actually involved in a different function in existing programs or hardware configurations
Block 1 will be changed. All other parts will whenever possible. Although many(_
remain the same. This means that changes manufacturers offer programs that incor-
for approved ECPs common to both base- porate these characteristics to some degree,
lines will only have to be made once to the Digital Equipment Corporation (DEC) was
common database. preferred for this development because they

offered an integrated system of computers
AQDS Development Philosophy and word processors.

The essence of AQDS development The DEC WPS-8 series of word proces-
philosophy is that quality and productivity sors includes the concept of a "paragraph
gains come from adhering to the principles of library." The operator saves commonly used
reusability. Since the design is supposed to phrases by assigning them a name in a library
flow from the performance requirements. document. When he or she wants to include
they are, in a real sense, reused in the the paragraph in a document, the operator
design. The same is true between the design touches two function keys and enters the
and the code. Information that could be name of the desired paragraph. The word
used again within a software project was iso- processor then substitutes the contents of the
lated into a central unit. paragraph for the name.

AQDS was developed to be one AQDS implements the substitution
software development tool that would be able concept by allowing this keystroke sequence
to support reusability across all phases of to be embedded in a document so that the
software development. In order to do this it substitution can take place automatically dur-
had to have the capability for the selective ing a later expansion.
substitution of information from a centralized L

2

1-°

• - .~ ~ ~. _ . . -, ... - - , . ?--. . .. -. ..-

The DEC WPS-8 also includes a List sentence, paragraph or several pages of text.
Processing package, which was originally There is no restriction on the size or style of
developed for producing customized "form the body of the object (other than it cannot
letters." We adopted this as the means for contain double angle brackets). The user
providing selectivity in substitution. determines the unit of reusability represented

by the object. An example of an AQDS
Unlike most word processing manufac- object is on Slide 4/9/85-7.

", turers, DEC chose to use named fields in the '.
list (variable part) and named references in Text Stream Orientation
the form (fixed part), rather than requiring

list position to match form position. The AQDS is text (character string) stream
main advantage to the user is that a field can oriented in input, output and processing. A
be used more than once. In doing this DEC database is updated from a text file or docu-
opened the door for a system of considerable ment. AQDS reads the input until it finds an
power. AQDS object. The object is stored in the

database in very much the same way that is
Phased Implementation of the Tool appears in the input. _

Since we were supporting a real project, When the user wants to output the con-
one of the guiding principles was to made tents of the object, he simply writes a refer-
each function work first; make it fast second. ence to the object name. The reference tells
In the beginning, AQDS, on the VAX, could AQDS to substitute the body of the object
only assemble paragraphs into finished docu- where the reference occurs. An example of
ments. All List Processing was done using the most commonly used reference, the lexi-
the WPS-8. This was slow, but it work. By cal C) reference is on Slide 4/9/85-8. When
the time the PPS got big enough for this to AQDS encounters the begin lexical reference
be too slow, we had AQDS doing list pro- delimiters (*), it begins a character-by-
cessing. Since we had implemented the character substitution of the object body for
WPS-8 LP package in AQDS, we did not the reference. The end lexical reference del-
have to rewrite the source for the PPS. imiters (^*) tells AQDS to continue output-

ting the text that follows just as it is until it
Over the last year we have concentrated encounters another reference to be pro-

,. on finding the routines in which AQDS cessed.
spends a lot of time and improving their effi-
ciency. As a result, the AN/SWG-3 code can Slide 4/9/85-9 shows three objects and
now be regenerated in only 24 CPU hours, a representation of the process of expanding
instead of the 72 that it took a year ago. the reference *^CONSEQUENCES". Note

that none of these objects has a "hard" car-
Substitution With the Reusable Part - AN riage return in them. All end of line marks
AQDS Object are "soft." AQDS provides these "soft wraps"

as part of its text stream oriented output pro-
A hardware part has both a physical cessing.

manifestation and a label by which it is refer-
enced. The same must be true for a software The positioning of the margins, tabs.
part. In AQDS. "object" with a body and a and centering are controlled by "Rulers"
name. embedded in the text. This is the key to the

flexibility of output formatting and is another
Following the format of a WPS-8 Para- concept taken from the DEC WPS-8 series.

graph Library. the name is delimited using (Slide 4/9/85-23) We have extended the
double angle brackets. The body is all the ruler concept to include the ability to gen-
characters from the last right angle bracket erate characters within the margins. This
after the name to the next double left angle capability allows AQDS to produce output a:
bracket. An AQDS object may contain noth- suitable for every programming language or
ing, a single letter or number, a phrase, design language processor that we have

3

.

encountered. (Slides 4/9/85-27 through 32) connections because their meaning can vary
Coaztnfnraobased on the form and selection specification
Centralization of Information in force for each type of reference.

The objects discussed so far are "sim- Object references can be used to con-
pie" objects. The object body is always struct different network or hierarchical struc-
included in its entirety whenever it is refer- tures in addition to the natural relations.

enced. It is generally acknowledged that a This means that the system is flexible
reusable software part will have various enough to represent any data structure in its
representation. These might include a title, most natural form. Slide 4/9/85-25 shows
descriptions of purpose, performance and the natural decomposition of "SOFTWARE-
implementation. representation of the design, TRACKING" using lexical C) references.
and representation of the code.

Flexible Processing (Database Queries)
AQDS handles this subdivision of

information by implementing the List Pro- Many database management systems
cessing (LP) function found in DEC's WPS- can provide a central repository and query
8 series of word processors. A "list" object functions. However the format of the query
corresponds to the List Document on the results is often quite restricted.
WPS-8. The "form" and "spec" objects
correspond to the Form and Selection Specif- AQDS provides all the format transfor-
ication documents respectively. mations that are needed to produce the full

range of development products. It is this
An object can be divided into one or flexibility that sets AQDS apart from other

more records. Most list objects contain a sin- systems. This flexibility means that a piece
gle record. Each record may, in turn, be of code can be encoded so that is will come
divided into one of more named fields. Slide out in Ada, Fortran, PL/ONE or BASIC. It
4/9/85-11 shows a list object containing one means that the input to a PSA database can
record. Slide 4/9/85-12 shows how three come directly from the source for a require- %TjI.
such list objects interact with a single form ments or design document. Slide 4/9/85-27
object to produce three different result docu- and 28 show five different reformatting of ..

ments. Slide 4/9/85-17 gives an example the "Main Object."
from the AN/SWG-3.

Because the database contains no fixed
Flexible Database Structures schema, one can change one's mind about

how things are to be related and processed
List processing gives AQDS many of any time during a software development.

the features of a very flexible relational data- This is very important in real projects,
base. Unlike most standard relational data- because all the requirements and constraints
base management systems, there is no data can't be known in advance.
declaration language for specifying the field
and record structure. AQDS stores the list Just as AQDS has no separate data
objects just as they are defined (see Slide definition language, it also has no separate
4/9/85-11). In effect the data language is database query language. This purpose of a
also the data definition language. This means database query is to produce some output
that not all records need to have the same which contains the answer. With AQDS one
fields. AQDS can also tell the difference constructs a reference structure of list, form P
between a field being named, but empty, and and selection specifications objects which
a missing field name. produce the desired output.

With its five different reference types (List processing is activated when a list
> < -), AQDS provides explicitly object is referenced. AQDS begins reading

typed connections between objects. (Slide the form object which as been declared for "

4/9/85-16) These are very flexible the reference type. When it encounters a __."

4

. . . . • * ° . •. ° . . , . °. . %•o - :- - °. * • . .° . - . ,- .

reference to a field, it extracts the field value CT*OS or Word-l.,.- • from the referenced list object. Much of the:5

power of AQDS comes from the fact that the The word processor programs allow the
form to be used on subsequent references inclusion of highlighting information such as
can be changed inside the current form. In super-scripting, sub-scripting, boldface, P.,
this way the form which formats the main underlining, etc. Highlighting information
sections of a document can declare a form to can be entered using a text editor if the inter- .-
do main paragraphs before referencing the nal AQDS format is used. This format is the
subparts field of the list representing the same as DEC's DX/VMS format. In our
current section. opinion, it is less complicated to learn than

the control characters in word processing pro-
Macro-like compound references are grams such as Word-Star.

supported which allow one object to be
passed the names of other objects and con- Input and output can be in the form of

- stants as parameters. These provide the VAX ASCII Sequential Files or DX/VMS
closest thing to a query language. Using formatted documents. The latter can be .,-*

them and the operator interactive features in transferred to any of the DEC WPS-8 series
. AQDS. one can build a fairly sophisticated of word processors or converted into several
[query system. other VAX word processing program formats

using Word-to-Word. (Word-to-Word is
The flexibility of processing is available from Redwood Technology Group,

enhanced because, in addition to selecting Inc. 170 Aquidneck Avenue, Middletown, RI
fields from a record using a form object, 02840 Phone (401) 849-8440).
AQDS provides the means of selecting
records based on relational expressions. This Providing Built-in CM and QA
is done using the Selection Specification
feature of DEC List Processing. Slides It is simply a fact of life that for manual
4/9/85-14 and 4/9/85-15 present examples of software development projects Configuration
selection specification objects. and the corn- Management and Quality Assurance are L_
mand which defines them. "add-on" functions. They are not part of the

main stream of a development project.
AQDS also includes features which There is no alternative to this unless all pro-

allow output to go to an internal string stack. ducts of the development process are
Information can be taken from the string automated. In that case QA and CM can be
stack and placed in one of ten (10) string built-in to the development process.
variables. Additional selection features are
provided through the use of a series of con- Some tool developers have taken this to
ditional expansion (e.g., IF, ELSE-IF, ELSE) the extreme that no delivery can be made
and loop control commands (e.g., DO- until the document or program is perfect.
WHILE. REPEAT-UNTIL) that operate on
these internal string variables. In an academic or other non-

commercial setting this probably is desirable.
Flexible Input and Output In the world of DoD it is unacceptable.

Deliveries have to be made, sometimes
In creating AQDS. we made a cons- regardless of the state of the program. The

cious decision to reinvent as little of the IOC of a major system is not delayed because
word processor or the text editor as possible. some improbable error path may exist in the
There seemed to be enough of them around software.
to satisfy just about everyone. Therefore.
AQDS will accept input in the form of Built-in QS with AQDS
sequential files or DX/VMS documents. Thelatter can be edited using a DEC WPS-8 AQDS provides features that support i'
series word processor or one of the VAX- built-in QA. but they are not mandatory. It

based word processing programs such as provides the flexibility to make a delivery.

5

.........-.. . . .

-.-J. '.- -. . ..-- ~ I~d f~ J~~ 2Si*

Using AQDS, documentation is "compiled" the most important of these is the use of
much like computer programs. A significant multiple databases to segregate changes.
feature is that the word processor or text Slide 4/9/85-40 shows this schematically.
filed output from AQDS can be edited, i.e.,
patched, in order to make a delivery. This When AQDS tries to resolve a refer-
feature is very important when one discovers ence, it first looks in Area 0 for the object.

6'.
a missing equal sign and there is no time to If it is not there, AQDS scans each succes-
regenerate the entire program or document sive area until it either finds it or runs out of
from source. areas. This means that approved changes and

baselined objects may remain untouched
Slides 4/9/85-35 and 36 list some of while trial changes are tested. It also means

the functions that AQDS provides to support that several users may try changes against the
Quality Assurance during prod4uction and baseline at the same time.
review.

The signal cross reference shown on ;,.--d.
slide 4/9/85-37 was produced by processing During its three years of development. 7

the PPS database with forms which elim- AQDS has shown that a tool which supports

inated all text except for signals. The signals the flexible reuse of software parts can make
were processed into a format shown, and a significant contribution to improved pro-
sorted by title. The sorted file was processed ductivity and quality in software develop-
to eliminate and annotate duplicates. ment.

Built-in CM with AQDS We believe that the tool set which sup-
ports a reusable software library must include

AQDS provides several CM support a tool with the characteristics we have identi-
functions listed on slide 4/9/85-39. Perhaps fled above.

6

7

."
..

%

RESUME --

LYLE A. ANDERSON

Senior Programmer/Analyst

EDUCATION

M.S.. Computer Science, University of Rhode Island, 1981
U.S. Naval Nuclear Power Training, Bainbridge, MD/West Milton, NY, 1971
Graduated work in Solid State Physics, Iowa State University, 1968

CURRENT EMPLOYER/SECURITY STATUS

Aquidneck Data Corporation (ADC) Dahlgren Office
01 June 1979 - Present
Full-time Employee II
Available for work: Start of Contract
Industrial Secret Security ClearanceManager, Dahlgren Operating Center

EXPERIENCE WITH AQUIDNECK DATA CORPORATION

General Experience:

(j Manage the TOMAHAWK Weapon Control System (TWCS) Ground Launched Cruise Missile
(GLCM) and Surface Launched Cruise Missile (SLCM) project contract (N60921-82-C-A078). H
Responsible for assuring product quality, overall Dahlgren office operation, and customer development
within the Dahigren/Washington community. Provided technical and consulting services for the
acquisition, evaluation, and management of Combat and Weapond System software. Developed and
coordinated the company's efforts to apply automated structured methods to software engineering pro-
jects.

Specialized Experience:

Computer Program Design Specification Support Worked on the design of the FLIT Program
(1970). Acted as Technical Software Director for the Fire Control System (FCS) MK 113 MOD 10
(1974-1976) and for the FCS MK 117 (1976-1979). Performed the final Technical Review (TR) for
both the Program Design Specification (PDS) and the Data Base Design Document (DBDD) for the
FCS MK 117 and for the FCS MK 113 MOD 10.

Provided major input to the automated development of the TOMAHAWK Weapor Control Sys-
tem (TWCS) EX 3 MOD 2 Launch Control Group (LCG) Program Design Specification (PDS),
including selection of technical approach and development of standard objects. Performed internal QA
review of AQUIDNECK DATA CORPORATION (ADC)'s portion of the TWCS EX 3 MOD 2 LCG
PDS prior to delivery to the NSWC TOMAHAWK project under contract N60921-82-C-A078.

Data Base Design Document Supporr Performed the TR for the MK 117 and MK 113 MOD 10
DBDD. Participated in the design of the data interface for the FCS AN BQQ Sonar Set (1974-1975).
Will perform internal QA review of ADC's portion of the TWCS EX 3 MOD 2 LCG Data Base Design
Document (DBDD) prior to delivery to the NSWC TOMAHAWK project under contract N60921-82-
C-A078.

.-- o

.p°

. -

Computer Program Code Support Wrote and debugged code for FLIT in Assembly Language on
the Honeywell DDP-24 (1970). Programmed the Honeywell H316 computer onboard the USS . P-.,

TREPANG SSN 674 to perform information management functions, sound velocity profile tracking, "-"
and navigational satellite alert calculations. Coded the AN/UYK-7 in CMS-2Y and Ultra-32 for FCS
MK 113 MOD 10 and FCS MK 117 (1974-1979). Designed and programmed A Quality Software
Development System (AQDS), the ADC Job Cost system, and WBS Cost Estimate system (1979-
Present).

Informal Test Specification and Module Level Testing Support: Wrote informal test specifications and
procedures and performed module level testing for all code mentioned above. Significant module test-
ing was required for corrections made to the FCS MK 113 MOD 10 Kalman Automatic Sequential
TMA (KAST) and Manual TMA (MATE) modules which allowed them to handle close-in targets.
These tests included the writing of a simulation program to produce expected results which are com-
pared to the actual program performance.

LCG Integration Test Support Was the final technical approval authority for FCS module integra-
tion for the FCS MK 113 MOD 10 and FCS MK 117. Served as the senior NSWC representative sup-
porting integration of the Inertial Navigation program into the SSN 688 and SSN 700 Central Computer
Complex (CCC) programs, respectively. This effort included support of land-based certification testing
as well as ship-board testing.

Response to Problems During Testing Support: Was the technical point of contact for all Program
Trouble Reports (PTRs) against the FCS MK 133 MOD 10 and FCS MK 117. Provided initial impact
assessment and assigned the PTR to the appropriate government program or contractor. Evaluated the
corrective action recommended for PTRs and presented these solutions to the CCC Software Change
Control Board (SCCB). Was the NUSC voting representative on the SCCB.

Review Support Prepared and presented results of FLIT at-sea testing to OPNAV personnel
(1970). Participated in the preparation and presentation of patrol reports while aboard USS TREPAND- .
SSN 674 (1972-1974). Presented technical portion of progress reviews for FCS MK 113 MOD 10 and
FCS MK 117 (1974-1979). Prepared an presented various technical and management review while at
ADC (1979-Present).

LCG Module Support Performing internal QA review of ADC's portion of the TWCS EX 3 MOD
2 LCG code prior to delivery to the NSWC TOMAHAWK project under contract N60921-82-C-A078.

Development and Maintenance and Support Software. Conceived the idea of the automated software
development tool (AQDS) in January 1981. Designed and implemented the initial version by March
1981. Presented the concept of automated software development to the NSWC TOMAHAWK Project
during the summer of 1981. This presentation resulted in sole source contract N60921-82-C-A078 to .

support the automated development of TWCS EX 3 MOD 2 LCG. Provided both actual design and
coding support as well as supervision of other programmers working on needed AQDS improvements.

WCS Diagnostic Program Support Provided technical supervision of government and contractor
personnel developing and maintaining the on-line diagnostic software, for the FCS MK 113 MOD 10
and FCS MK 117 (1975-1979).

Internal Software Baseline Support. Provided technical supervision of government and contractor U.i
personnel who maintained the internal software baseline for the FCS MK 113 MOD 10 and FCS MK
117 (1975-1979).

Release Management Support Provided technical supervision of government and contractor per-
sonnel who released the software baseline for the FCS MK 113 MOD 10 and FCS MK 117 (1975-

1979).

S. .*. %**-..... *-..p- "-

"~ PRIOR EXPERIENCE

--'*" 1974-1979 Naval Underwater Systems Center (NUSC), Newport

PHYSICIST (GS-12) and MATHEMATICIAN (GS-13), managed the development and delivery
of Fire Control System (FCS) software for FCS MK 113 MOD 10 and FCS MK 117. Wrote key sec-
tions of both programs including the AN/BQQ-5 Interface Module (FDN) and Console Module Execu-
tive (FSA). Designed and implemented the warm restart function including modifications to the Data
Management module (FDM). Provided technical supervision to government programmers and techni- *

cal direction to contractor personnel working on these projects. Served as Assistant Test Director on
the first Operational Functional Check-out of the FCS MK 113 MOD 10 aboard USS LOS ANGELES
(SSN 688). Cited by NUSC and NAVSEA for contributing the solutions to several problems regarding
the operational performance of both FCS. Designed and implemented the system programming
changes which allowed the easy integration of the TOMAHAWK WCS functions into the FCS MK 117.
Developed the fundamental design philosophy behind Combat Control System MK I which is the suc-
cessor to the FCS MK 117.

1968-1974 U.S. NAVY
Discharged with Rank of Lieutenant, Junior Grade.

SONAR OFFICER aboard USS TREPANG (SSN 674), tested and evaluated experimental sonar
systems and provided liaison between the ship and Navy Laboratories and Contractors. Developed and
implemented the algorithm used in the first successful sea test of the FLIT concept in 1970.

PUBLICATIONS

The Journal of Chemical Physics:

1 j "Quadrupole Coupling in Dirhenium Decacarbonyl," with S. Segel, August 1968

" "Zeeman Quadrupole Resonance in Powders," with S. Segel and R. Creel. June 1969.

As Commander, Submarine Development Group TWO:

"Technical Research Contribution 3-71," 1971

For the University of Rhode Island:

"The Performance of Algorithms: A Research Plan," with E. A. Lamagna and L. J. Bass, July 1980.

"Systematic Analysis of Algorithms." August 1981.

CERTIFICATION OF RESUME
I hereby certify that the previous information regarding my experience and qualifications is true and
accurate to the best of my knowledge.

Individual's Signature: Date:

Facility Manager's Signature: Date:

9
.0

RESUME

SIVEY S. HUDSON

Junior Programmer/Analyst
*410

EDUCATION
B.A., Mary Washington College, Art History, 1963
12 hours Computer Science (Assembly Language, FORTRAN) Charles County
Community College, 1983

19 hours Math (through Calculus It) Charles County Community College and
Rappahannock Community College, 1983

CURRENT EMPLOYER/SECURITY STATUS

Aquidneck Data Corporation (ADC) Dahigren Office
03 February 1982-Present
Full-time Employee
Available for work: Start of Contract
Industrial Secret Security Clearance
Currently managing the Configuration Management (CM) documentation production project.

EXPERIENCE WITH AQUIDNECK DATA CORPORATION

General Experience:

Analyzed data to Computer Program Performance Specifications (CPPSs) and Computer Program
Design Specifications (CPDSs) to produce performance and design specifications and computer pro-
grams for Common Weapon Control System (CWCS) Vertical Launching System (VLS). Directed the
maintenance of the TOMAHAWK XWS 21717 EX 3 MOD 2 Program Performance Specification (PPS)
computer program baseline and prepared the data base objects for its establishment. Designed the
automated procedures for the Request For Action (RFA) and Software Trouble Report (STR) Resolu-
tion Efforts. Wrote the RFA and STR Procedures Manuals. Have over 2 years experience using the
VAX 11/780 to produce documentation and to develop analysis procedures for this system. Exper-
imenced in the operation of the Digital WS-200 and WS-78. Experienced in the application of tech-
niques and procedures outlined in Military Standards (MIL-STDs) 483 and 1679.
Current Supervisor: L. Anderson

Specialized Experience:

Analyzed data to Computer Program Performance Specifications (CPPSs) and Computer Program
Design Specifications (CPDSs) to produce performance and design specifications and computer pro-
grams for Common Weapon Control System (CWCS) Vertical Launching System (VLS).

Review Support Attend TOMAHAWK Software Change Control Board (SCCB) meetings. At
request of NSWC personnel, provide AQDS documentation to be presented at project meetings.
Responsible for internal tracking of ADC-developed Software Trouble Reports 'STRs) and follow-up
on Action Items (Als) assigned to ADC. Direct the efforts of personnel assigned to reviewing pro-
posed changes and preparing configuration change forms. Provide consultation on the editing of Pro-
gram Design Review (PDR) and Critical Design Review (CDR) information.

Development and Maintenance of Support Software, Responsible for identifying bugs in A Quality
Software Development System (AQDS) and designing new features to alleviate the problems and/or

10

. . . . *** **• * ..--.- * - 7 ;-;..",". ,-¢" -- "."." '-". .-.-,-,-,"- -'-' "."-' ".."- . -"." . .." '- " ". ,'.. .,," ," " _' ," " ",' '," V

enhance the program.

Internal Software Baseline Supporr Supported the software (development and product) baselines
by directing the efforts of the maintenance of the TOMAHAWK XWS 21717 EX 3 MOD 2 PPS com-
puter baseline. Prepared the data base objects for establishing the EX 3 MOD 2 PPS baseline. Imple-
mented system changes, maintained updated printouts, analyzed baselines, and corrected errors. Super-
vised the editing, updating, and testing of PPS data bases throughout development and changes gen-
erated by the Change Control Board (CCB). Interfaced with NSWC personnel to discuss the status of
prepared reports and change packages, updated master documents by integrating approved change pack-
ages, verified updated documents, and delivered updated copies and verification reports. Supervised
conversion of CCS MK I Program C4T PPS (AN/UYK-44 and AN/UYK-7) Input/Output (I/O) tables
into Problem Statement Language (PSL) data base; documented the conversion and data entry pro-
cedures. Coordinated the PPS EX 3 MOD 2 Request For Action (RFA) Resolution Effort system with
NSWC Configuration Management/Quality Assurance (CM/QA) personnel. Designed the automated
procedures for the RFA Resolution Effort. Wrote the RFA Procedures Manual and trained NSWC per-
sonnel in the use of the VAX 11/780 and the PPS computer baseline. Archived files to establish the
post-Program Design Review (PDR) baselines. Established the design for the ADC CM Library which
includes an efficient manual/automated storage and retrieval system and which makes it possible to
produce a Library inventory, as well as many other outputs. Supervise the efforts of personnel assigned
to the development of a retrieval system for the TOMAHAWK Launch Control PPS SCCB-approved
changes.

Release Management Support Directed the efforts of personnel involved in the release of the EX
3 MOD 2 PPS, PDR, and CDR Revision A magnetic and paper baselines. These efforts included the
establishment of procedures which: enabled NSWC to confirm a complete and accurate delivery;
informed NSWC about the form of the delivery (revision pages, computer program, etc.); provided
NSWC an avenue for acknowledging receipt of deliveries and for reporting problems; defined standards
for assuring the accurate duplication of software products; and produced a thorough and efficient label-
ing system.

PRIOR EXPERIENCE

1963-1980 King George County Public Schools

TEACHER, held various permanent and temporary teaching positions.
PUBLICATIONS

U.S. Patent 3,388,708 issued June 18, 1968

CERTIFICATION OF RESUME

I hereby certify that the previous information regarding my experience and qualifications is true
and accurate to the base of my knowledge.

Individual's Signature: Date:

Facility Manager's Signature: Date:

'a

,,1

. ...

*-,

CD

,: 0 ~IL!.:-:'

"|~F (' -. ':

Ccccc

D 0.

LUL

Slide 4/9/85-1 :.,

12".-.

.° . .:. _ - . , .'- - ' . .,- ,.. .

z a..

,.-a.

zj

a. 0
-JaL

ujw

o ccw

Slid 4/985-

W = Z-< 13

V ~~ -- k 7

UL
5%uj

F- -U L

z CD
00

C1

0 0\ Wj
I- 00

0

0 IL 0
zL I -

> aj
wU -L CLJ

D Li

D' z <

> wL L
C. w 0

Sld0/98-

15I

LLI
z

D .L -.U

In 0) C

- ORA

0,U

Sld498-5 N

:rrrn - . -

J

z
o .2 V
-

0

2...0

U

0 -~

D
0

Li
Slide 4/~/85-6

1~

*1

.'-.c.* -.c-- - - * - -.. * . *. -.. ~-.. *-** *.- *.. -*. *.- -.- --. -.. *-- *-. -' .* .*%*'* *%**~** .. .*- - .

4*1

-. L

"I' 0* a. 03 ML

t- 4. W 10 0
W~-

LU 0 a

Aj - =' '. o

-0 4 1 4 0 Q

o to - a~~

41 s-

~ o0 02 ot

CO 41 4j 20% *4 W 4

0 t.
6

411
0

24 s-I

a -4 f-'.

tu 41 n 4.0 to J.

rc = = 18

; Aj to

C/C,

* (U

Sld 4//8-

19

I.0

ra I C it 4. 1 i 4
6 a, W * 0 0l lo

U 2
0 - 0 1 C6 I C

V 1 -0 b C6 I
I U U ~ I I 0 10 2

6E -6 19 I

-o I=

0 10I0 *0
A1 1 41c * .0

l M I w -A6 "I -C CO I

0 al I 1 0 a I a W I a

o c . 906 bm 4. aC
Wp U.. 1- 2. 1- - I

2u U C I MI

02 .A* 2 MI £ at A
* ~ ~ I 0. a.vI I MI 3

-6 U3 a C "s ~ 3 0

2 MZ . CI . C- 1w~< a C6 W a U cc 034 .

I~~% A 3

U2

L. .
p. ,

N-". S...

.I-°

0 i

Slide 4/9/85-la ..

.

, ,-2 1
:'- ." i .; '- -; -2"-) _. ' -2 , _- -- ." -. -.' i- .; -" # .,- .;- ..- , " .i . .,i , _ .', _-, " , -.2 .._ -.- -.' .. i .-- ..z -.- i --, -..- -- _ -_ d : .--,- ., -, .-, _ .':

0, w~*.6 0

L.OO flA C LW *

feU..
CL 0 ..

U C*.1

5'. L." 1

CCD

0- 4- C6 bg

A ICL aM6. a. o .
0 1

fM a cU~
1.1 o.~ 0 , (. .0 *A

4-~~ ccU- a a

r6 -EC Z.. U, L = = -
s 3 %~.00 .C of m AC6

lp MW r6 C.
P-4 L.

2
AL ,j V -

q a U6:A COa-4UU, 06w
ti IJ ~J '- c. .: U L.

I.JJ 0 ~ .6.~ 0 0 C- A 0J **

.0 .0...i O-0 =U a;UU.J c 6
1 C6 aI I 1 0 0 O ~ U C C.ac

Slide 4/9/85-11

22

S.%

-

I~EL
B,..'.

I.~ *,*~* F a ,~

-- - - .4 - - - - - - .~ .4w- - - - . - -
- - - - as - -M - W fl. -

- a..~s. w -- a - - I - -- - .4 -
- , - 4~ - - a

a - .4 - - - . . -
- - - . 'Cs

-" - -- - . * *** I
-. - .. - -- I

- - .. - 1 LA
- - .. . - -
-- a.. -

-'C. 4. ~s.
-. 4 =

- .-

F~NM C3.ZC~

-

fl - - ~ - - - - -

a -

- w

zu~ oocm~
t-1

- - - - a =

- eaw

- - - - - - -- - - a - - - - - - -
- a a a - - a - - - - - - - - a.

- - ea . -- -

Aquidneck Data Corporation
'I

Slide 4/9/85-12

5'.'.

.5.-

23

r

S...................... . . S

-~-~-~ ,, ' ' rwrrr urr~r~r.r~s -~~ W a ~- r -~ .- ..- . 7-~~.- - '- .*.' * .- **

LLJ.

co

Slide 49/95-1

24

SELECTION SPECIFICATIONS

THE SELCTION SPECIFICATION OBJECT

3e !* ..e:cn smec.ficatin cb4 eC: name

b-. -'

-f <=e-.o-da~Z>=iZ Zume 1984 selection s3ec-
then process record " coec- boyv ',

<0>

end object mar'ker

TEE SELECTION SPECIFICATION COMM=N

e S p E = S P.- CM M 0 1 2J U K E @

begin 3el spech selecti-on end

CC-nd for al.I specif Icat on ca=and

I that cb,~ect mne, then
mear.s

lexical z-eference3 izi(

Aquidneck Data Corporation

25

r ' '

- . .° . . o °. . .- . . . °

. • . . . • . , . . ° , ° , , • . ° ° • o . . . • °° ..

7 ,7 . 7 r..r . V 1 -

SELECTION SPECIFICATIONS (Cont'd)
Jm. SELECTION SPECIFICATIONCS

if Cas.->=avis
or sAnderzcm
or zxC~ng

then process record

if! <state=A2aslca
or agawa±l.

ad<c.-ed±4t)ugood
but not if <occupation>=Policeitan
thien process record
<0>

if (mar? ±ed~xT
then process record

or if (State>mU1aska
or z~awaii

and <C-redI-t>=gccd
but not if <cccuPation>xzolctnf
thenl process record

j or if (state >CC&! for'mla
and (ccupation>z5eac±'4 Bum
then process record

Aquidneck Daa Corporation

Slide 4/9/85-15

26

* ~ i~-. -~Pf.jA.. .&. FW Vi.L3'I - -, .

06CL;% -

IL

~~3C CISZl a

Co toC

Slile./9-5 2

61 I I 7-71

a. -- I-- l**-27

a I '

0 -- " Ud% CL 0U AP CAV:-I C1w(

-4 C-C) C2. U C A O C I w I,

. O C4Z CA 4n I

I ~ O ~I OA

- Al m CIL I * -9I

)4 ell r'1

U) -4 M 0 S q i- m
0 =~ II= CA

(0) 11"

I 281- ", .00 -o C 34A

I.j
LO co

CLC

0-J F-a.OE
III cc)

29

ici

L02 = L:

C' LJ L AJ

ai-

LUA

Lu f. 06

i' = -J

F- 40C .

a. .m

U-

.- hJ IUl CA

C, C=
Ir-

L..w~30

* - -wv- ~

I

b..

~' .~.

I-1-* 0

0
- U

m
4-. w QI

U-

31

r

L.~ ~Qk-I~i& L--2j4-Q-Q.+>K-.-W---.--.--.-- -..-...-.-.-. *.-..-'-'.. -~ - -

LL ..

Lbat

0
a.a

w L 6

320

C)w

IL F-
0

_ - C) 0

F-0

LLL

33
<p

CL

I Go M "

I X .

I (L "a

I...- 0 (A0 -

a L

f- OW*

- 0 -A -A 'A -

0 uj A

C- -A-

Me- 14 jS~

34LL

C',)
z~z

0 C/
0

C)'

- 0

cU '- *-f

<0 o

Sz E -j wU

<~ _j

a .
-. 10 Zo 0..

35c

0 .

-LL w

A - A -

66 96

Ud o

a -C

54 C6 r.

j..l am1 CoI

L* -0h
LL A dc- 4,

9i J2 a6@
0-0 0

aL 0- a

UU u 4

U ~ hi 0 L.a.0
39 A C iL

@2j C X

ta a i 4LI

L.L~/(/ a 2 A hI

C 06 = 36

LL

CD
Co CL

00
*U z

I-

Hj
u

o 0 w -

LL -JOR

Li..

CLo0-

37

Ia
z-- ; - A U

9z- - . Lao 1

4s-2- a

-aa zw

I.. *e. - u = in
.. ; -2 -J

W1 7; - -

* U aaw~. ~ a@ - * . . 4..

az~- ... ~.ja u In
223'S *a '

W- z 0 3. -

- a. a l. wa Z 44 Z
a 'Q. = 2

00 W Z I-

wn=' A

U-

21

I co
200c

Slide 4/9/85-27

38

* ... u N. *%

Cc

-0. 06

%ROO*OO

ISaCa a- 6

00 a a

w. - 12 S,

- -

1 00 c.f

9. a. .J- d a.L

4 -- In In It.

au ~ ~ 3 ,.-

ClCo

z Lz

cc -

=3- -0

U wLU
Q 0-z F-<

LU a.- -U

00coz

0

-a . U Z z
a ~0 - ui w

I 0 V *Zt
I 0 1l .I I= L

C U ON
c ~ 0. a- I...

w I6at

0* 5 W 2 1 -. .W -

10 0 a aw

a. -14- =
w~ a ccUS3=.x =a..

=M- I 0 O

C.. 1 Ca L- 0)86w C

0* - - -- a - --- -- -a- -a- -- -
c

in o, VU

U. 16 a I-~
I I

60 v'inJ -C --

-C1 0- 1.-
w w

6 39

wuw

I--t

*. N * -
.

ICW 16

'~ --.- -... r . .rw-. .- ~r '. W ~ ~ YfI~i.cis

cr. -t3 c -

09 0
0 Ema .

LL. V30.0- 3-

- C600

030

2. 1 IC 11 1 6

cc* 4L
w - .. * =

96 LI.

as I . - C C :-

LU :... U
a 0 O o £ -. ~.c

I- I . .a ~ 42

'.~q. ~ -

mi
-.

CD Q 0

26

0 0 Q60
6 6 6

0

- 6 6

u c 6

4: -: m - 0

43 6

(D.

00

ClC,

> LL I
0L C/)

w F-

co LL

LUi

j IU 0 U) -

-U ZU CO -

44 >

LUI

Z

rc te ~

-zoz

0 -6

C13
Ca -C

~~4-0

0 2-
ra.
CC,2

46

7. 7.Tr

cr. A..#

> W..

4c:

E--

a

474

a In- -

0 1 -

on VI u

0 . % V3 -. 4

U)I U)

i.6gM MU
.I IO 6. wag

-- h1
6 46 L=. a%

fA 46 -= U) 4.6 - O)
c 09 a 6-

-~ on 2 - Q1 1 _C

.0~~~. a1 U)L.3 cu I

A. W)W J I. C6- c C

0 0 ft "02 I W C i C

o~ CC=0

a- -Lo.mCz ~ ~ C -w :n:C102.

Z cm cm acU 92 w1 4/
1 4- W WI 1U 0%V c I- -

I t 66 I* .W w a - W_
0 0 r.-~= c.~U 41 U .

41 a1 --- tz~ ~ 1 6 _J A4W11- J6 *.1.. -to~I(
41 ~ .9 C W I1 U la~W fy*.- u

w W 16 * t- '
.0 .. . a, 04. I

Li.6 - _ -J *0 V3 003~~

COU3~.W 16 -J 0. !! 00-' !U-)
a . .U) . Jr *C - L. =W *CI. 2

.j 41 Ci *0 - a.* -Uw a) *Li' N ft m *p o -w '"

60 6. 2.O J - M~U 6 *U

41 c
-C- m 3m 39

1.4 c- 4 %a:m I NJ.i 3.. I-

6z 5a aU~W a SS

* ~ ~ .0 u u L? U.= 414'- 0-41 U

--- 4 =4 00 00 01 ~
a~ -C -C -C -41 -- -,g a 0 '

in 410 0

U) C -I
E M, 0=, 'w ..z .6

-6. 41 4 4 6 46 r- 002 16-
* a Q 42oo Ca I0l - 16

41w 011 U 1 at
o 6. I c . .0 . 1 t 3 IQ Z zw

'at 41. = CCCCCV)
1-W6-1. 1 ma

4..C~.32 0 U cg2 U

- Slide 4/9/85-37

48

El
U I

I
-- *%..* ~

S I - .1'z
LU

LU
0
z

5

U

z
o -~

(~.
S. -~

Li~i.
oIi z V

0

1*'.
.p.r

49

7

* S ** S * S * S S 5 .- S

7-7 -7 7

x c 2

Ca.Z

-p x

c 0
~Q

< cc.Ca
5- C'

Jr - C-
E-c 2 2 0

cc = -
cok

~. C 50

LL

Cl))

-a.

Li

t-

-n>

- Z

Ca-i
LL

0n
==

I-F

51

.7w

- t:

41 cn - a. 4

-9 w zc zz

.- ..
41I 410(

-L 4- .10 0 F-

.4D 0 4. .

L~~~ ~~ 0 1 4i 4 . 4

10,-

Q.. 0 a a
ccU

LL4.

w 52

OBJECTS WHICH PRODUCE
NAMENOSIG

/0 1 12-19-84~ 18:49 NAMENOSIG (UNLOCKED)*/

<?<F$-DESC (*@NAM~E@* <DESC>!(0>

/o 2 72-19-84J 18:UJ9 NAME?4CS: (UNL,)CKED)'/
?<(F$MA:N-?ARAGRAPH B0@ND CP
QFORMP=$T--~S ~0FORP4<=F$-TlTLE@'
6@FORM>=FS-TI7LE@*I
*FCFM=:F$-l-lEV&

<hdr>

*@NAMEef

*FORMe:F$-UT=rLE'

(prt) <utitle>

FORME:F$-iTTTLE@

*FORM-=F$-DESC~f

<DESC>

*fFORl4':F$-HAZN-PARAGRAPH#0

r tbl-figs>4BE0IN CP
<sUBP>*@END c@4

*eBE:N C@6

%I/ 3 03-25-85 09:01 NAMENCZ:G (UNLOCKED)*/
<?<PARA-OF>>6ePORMe:FS-MA:N-PARAGRAPHe'
6@9EGIN CP

*e.END C#4

Aquidneck Data Corporation

;3

EXPAND WITH NAMENOSIG'

DECLASS

3.4.5 eclassification

The purpose of the Declassification function is to declassify the

#LOPS# and 9DDPS10 during an orderly Launch Control G2roup shutdown, and top declassify 4#S-TLAM#%s as required during normal operations.

DECLASS-INPUTS

3.4.6.1 *GDECLASS#*_Inputs

A list of the input signals required by the Declassification function is

provided in *07BLU-OF:DECLASS-INPUT-TASLEE*. A detailed listing of each

signal is found in Appendix C. and signal cross reference is found in Appendix

DECLASS-PROCESS

2.'J.6.2 *IDECLASSOO Processing

The processing requirements of the Declassification function are presentedSin terms of the following subfunctions:
a. Orderly Shutdown

b. *ES-TLAM04 Declassification

-he following subparagraphs specify the detailed performance requirements

of the above 3ubfunctions.

DECLASS-SHUTDOWN

3.4.6.2.1 Orderly Shutdown

The purpose of this subfunction is to remove all Classified data from the

gL:)PSO and *DDDPS9, and to remove all classified mission data from the

System Disk.

Aquidneck Data Corporation

54

MACRO ISSUES IN REUSE FROM A REAL PROJECT

Thomas D. Arkwright

Lockheed Missiles and Space Company -i.
Sunnyvale, CA

1.0 OVERVIEW* Chart 1. Selected Macro Issues in Reuse

The emerging Ada* technology has already sur- Achieving Universal Buy-In on Ada Software
faced in Sunnyvale, California, at Lockheed Mis- Reuse
siles and Space Company (LMSC), where Ada is
now in use on a multi-billion dollar project. Publishing a Schedule of Benefits

A business-like, and intellectually honest. flavor Implementing a Development Cost Reduction
characterized the voluntary Ada acceptance pro- Program
cess at LMSC for this project. However, webelieve that the acceptance of Ada hinged on the Ipeetn aneac otRdcin .'
underlying structure of our acceptance pro- Program
cedures. which followed two concurrent tracks.
the macro and the micro. Preparing the Implementors

When we speak of macro issues we reference A shared feature of the issues in Chart I is that
themes that affect the bottom line. Macro issues they are intelligible to the class of higher
agitate or comfort decisionmakers. When we decisionmakers that no one would expect to dis-
speack of micro issues, we reference those cuss the details of Ada and software engineering.
themes that affect the implementation. Micro For example, a software engineer should be able -.-
issues motivate the technical judgements of the to assert whether or not the preparation of imple-
implementors. mentors is being accomplished. A second shared

property of each macro issue is the availability of
Chart I enumerates some selected macro issues an observable impact that a decisionmaker may
in reuse. The purpose of this paper is to report attempt to control.
that, in our experiences, the ability to project for
decisionmakers the expected benefits of our
maintenance cost reduction program was perhaps 2.0 DYNAMICS OF MACRO ISSUES
the biggest factor in the acceptance of Ada for
one major project. In our experience, LMSC and Macro issues are important because a successful
military decisionmakers have had strong concern review of these features is a precondition for the " " -

for reuse's impact on maintenance costs, to the managers who occupy the most responsible posi-
point that LMSC's maintenance cost reduction tions to give their approval to implement the
program is now perceived as the most influential micro issues. In general, a decisionmaker will
macro issue in reuse. Accordingly, we have not fund a technically elegant new solution if an
selected that topic as the basis for illustrating this adequate old solution is less costly. On the other
, article, hand, a businessman is virtually compelled to fol- -.-

low a cheaper elegant solution if the macro and -
"___________micro issues appear manageable.

*Our thanks to Jim Kplan. LMSC for his contribution
I

.

to this study, *Ada is a registered trademark of the U.S. We shall see in this paper that reuse appears to
Government (AJPO) be of immense importance on the macro level

55

because of its effects on cost; whatever the indi- which take into account special features of Ada
vidual decisionmaker's personal opinion, if all such as the ability to accommodate a significant
other macro and micro issues are equal, cost will amount of software reuse. An instance of this
generally carry the day. model is given for JOVIAL in Table I, and an -"

instance for Ada is given in Table II. The possi-
bility of extracting a delta is based on the idea of

3.0 CASE STUDY OVERVIEW: QUANTIFY- applying the rules of the model to a baseline set

ING THE IMPACT OF REUSE ON MAINTE- of data (JOVIAL) and to a treatment set of Data

NANCE COST REDUCTION (Ada). In reality, every output of the model is a
virtual delta. For example, the total lines of

A project at LMSC recently decided to use Ada JOVIAL code on hand in 2005 A.D. could be
instead of its original baseline, JOVIAL, to compared with the total lines of Ada code on
implement its software. In retrospect, after all hand in that year. This richness facilitates the
the other issues feeding the decision had been review of assumptions, and enable a fuller
addressed, we were able to reach a decision only interpretation of the ultimate cost impact of
after quantifying the maintenance phase costs language selection during the maintenance phase.
with a projection. Building on LMSC's earlier
work in reuse we built a model which reflects our The data mentioned above represent the best
perception of the role of reuse on the project. By available information. For example, the divisor
our calculation, the largest contributor to mainte- (2000 lines of code) used to compute the
nance phase savings would be software reuse. JOVIAL unadjusted yearly maintenance manyears

(see column L) is a DoD historical statistic for
Our case study projected the maintenance cost of the average number of lines of code (LOC)
coding in JOVIAL and that of coding in Ada. maintained (serviced) per year. This agrees
The projections were performed using two sets of roughly with LMSC experience. Other data are
assumptions which we call the nominal case and more solid; for example, the timespan (1900 -

the worst-for-Ada case. The actual projected 2008) is the current planned-for maintenance
values conform in the aggregate to generally phase. Still other data fall unequivocally into the
accepted notions of the cost of maintenance (see realm of assumptions. For example, the staff
section 6.1, Calibration). Some values are not attrition curves for each language are presented
based on the literature; for example, the software as inversely proportional. This and all other C" '
reuse experience lies largely in the future rather assumptions are equitable and logically defensi- .-

than in the past. However, our assumptions are ble, but clearly are not subject to strict empirical
clearly laid out in section 3, and alternative confirmations: the future lies ahead of us, and
values can be readily submitted to the model, on projections interpret the future.
demand, in order to assess the sensitivity or
impact of alternate values for selected parame- 3.1 Nominal Case Assumptions.
ters. To reduce the need for multiple alternative
analyses, we have worked through a second set of The following subparagraphs describe the
assumptions significantly less optimistic for Ada. assumptions used in the nominal case for each

language. The exposition proceeds from left to
A key feature of this model is its realistic right for each term (column) of the model. For
accomodation of de factor practive, in that error each datum subject to and/or resulting from
removal and new requirements are likely to con- computation, the formula for its term is shown
tinue to be somewhat difficult to distinguish in beneath the column heading. When no formula
the maintenance timeframe of the project being is given, the values of the column are strictly
discussed. This feature reflects the fact that expository, and may (see column N) enter into
while maintenance budgets are programmed in other formulas. Please examine Tables I
advance of need, the maintenance effort has two (JOVIAL Projected Maintenance Costs: Nominal
legitimate components from the budget officer's Case) and II (Ada Projected Maintenance Costs:
point of view. The uncontrollable component Nominal Case) while reading sections 3.1.1
associated with errors, and the controllable com- through 3.1.11.
ponent which responds to requirements.

3.1.1 Year (Column A).
We have formulated a uniform model suitable
for projecting maintenance costs of various Each year is listed consecutively, starting with r"
languages. We have included terms in the model 1990, the start of the maintenance phase, and r

56

. . ."

.- -,.--,

continuing through 2008, the last year of mainte- LOC required. This percentage has been deemed
nance. rational by experienced hands at LMSC, but it

could not be grounded in any known data. The
3.1.2 Total Lines of Code (LOC) On Hand assumption favors JOVIAL, in our opinion.
(Column B). JOVIAL programmers are sometimes reluctant to

jettison code that just might be needed else-
Our working assumption is that in 1990 there will where. In Ada, this can be determined more
be 500,000 lines of code on hand, regardless of readily. We are not convinced that all supplanted
implementation language. Thereafter, the total JOVIAL code will actually be removed.
LOC on hand will be the LOC on hand from the
previous year (Column B) minus the LOC sup- 3.1.5 New LOC Required (Column H).
planted from the previous year (Column F) plus r
the new LOC actually composed from the previ- The new LOC required values for JOVIAL and
ous year (Column K). Total LOC on hand is at Ada are assumed to be ten percent of the total
the start of the year. A LOC is defined as an LOC on hand minus the predicted yearly errors.
executable high order language (HOL) instruc- Thus. ten percent of the total LOC on hand will
tion, exclusive of reusable off-the-shelf modules. be serviced annually. That ten percent will be
Earlier work at LMSC by our group showed that split between LOC serviced due to errors (uncon-
the comparability of LOC across languages can be trollable maintenance) and LOC necessary due to
increased by making a distinction between new requirements (controllable maintenance).
declarative and executable lines of code, in the Note the explicit claim that the total level of
sense of the RCA Price S cost estimation tool. effort is mostly a reflection of the budget avail-

able, rather than the number of errors or the
3.1.3 Predicted Yearly Errors (Column D). number of new requirements in need of service.

The predicted yearly errors (LOC that will have 3.1.6 Reusable LOC For New Requirements
to be serviced due to errors) is defined as being (Column 1).
two or less of the total LOC on hand. The for-
mula for determining where, in this range. the This term quantifies the LOC not composed. due
predicted yearly errors will fall is as follows: Two to reusable code that already exists.
percent of the total LOC is determined, and then
multiplied by a factor. Those factors are listed at 3.1.6.1 For Jovial.
the bottom of Tables I and II as variable VI.
They are figured as follows: Jovial does not constructively support reusability,

so this entry is zero.
3.1.3.1 Factor for Jovial.

3.1.6.2 For Ada.
Errors decay smoothly over a nineteen year
period down to ten percent (of two percent). For Ada, the number of reusable LOC is deter-

mined as a percentage of the new LOC required.
3.1.3.2 Factor For Ada. This is 40 percent, starting in 1991, with a

straight line growth curve to 60 percent in 2008.
Debugging is assumed to be less than the effort

of JOVIAL due to Ada's ability to avoid global An earlier LMSC study gathered estimates in a
scopes, to reduce module interactions and to survey of LMSC Ada programmers. Their con-
deliver other benefits discussed in the literature. sensus was that eventually the maintenance reuse
With Ada. errors are assumed to be removed factor would be eighty percent. The sixty percent
over a four year period. Subsequently, errors eventual reuse factor used here is a more conser-
level off at a nominal five percent (of two per- vative assumption. To further reduce any poten-
cent). tial overestimation of software reuse in Ada, we

have started with a forty percent factor in 1990,
3.1.4 Supplanted Code Removed (Column F). increasing in a fairly straight line through 2008.

as described by the vector. V2, at the bottom of
For both JOVIAL and Ada. the supplanted code Table II (See also Ramachendra, P (1984)
removed as new lines are added (we assume that Software Development Evolves into Software
errors removed is a tit for tat replacement) is Engineering, Computer Design 23. 10, pp. 165-
assumed to be twenty-five percent of the new 176, for a more optimistic scenario.). The reusa-

N V v ---- -. -

a Q

-- i

-!a

2c. - - -

N

°

;,'. 58..

S. o. °

S.

A ~.
4*4

~ .4..
-4 -4.

S
4"-.- S.

-4-4-4-4 ~ -4-4-4-4

~~c4-

-4--.

4~4

Z -- 4 -
-4 -4

-. '-4 ~~4-4- - - N N- 44...-4-44- -4-4-4~ N~*

4" .4- -

-. ... - ~ ~ 4444~-4 ~ .

4% ~ - ... 44.44'I.04 Z~4 ~ 4*4-4-4~ -4 -4

.4- ~ -~ ~ ~ ..;44;44j j.4j44~ -

- -'~ - -4-4-4-4-4 -4-4-4-4 -4 ~ I'
'4 .. ,- -.
4' -4- .4.

.'~- ~4 ~

-4~-4~ .44~-4-44.4 444~.4-4~ *~4~ -4 '4.44;

-4~4.444444 ~4*-44~-4-4 -4-4-4'4.~ 4..44. -

-~ '0

- -.. -4~44 -4'0~ -4 '0~~-4 *~~-4 '~ 4~

~-. * '0~"4- NNN'0 ' -
- 44~4~-4-4-4 44.

4- -4 -4

~4~4 ~4J.
4-

~ ~ ~ ~:-4

-4 -4 -4 444444
-4

* S.
4-4
4-4 44444~

-4 -.. '~ -4-44~ ~ ~4~4~4 ~ ~

-% 44. ~ '0'4.N4.4.. ~ .44

-4 S.

- -r

-44~-4 ~ -4-4-4-4-4 ~'0'0'0'0 '0N~~N N444N

-4 4-~

- -4
N

4 4
4

4 4 ~
'~44* 4~4NN ~

-" - -4

-~

-. -44.. r

59

A
'4 .. fli±....L~ 4 - 4.~ ~ *.j~4 4. - - 1.4. - 4 44.~ 4

bility level in the first year of maintenance 3.1.8.3 Note.
(1990) is assumed conservatively to be zero, due
to overhead costs. Such overhead may include The Ada/JOVIAL differentials are conservative
establishing a data base for cataloging modules or with respect to the recent literature (e.g.. Boehm,
establishing procedures for reuse. B. and T Standish (1983) Software Technology in

the 1990's, IEEE Computer, 16, 1 1, pp. 30-37.),.'.3.1.7 New LOC Actually Composed (Column which uniformly suggests productivity improve-

K). ments might be up to an order of magnitude
greater, based on standardization, program gen-

This term expresses the LOC that will acdtually erators and so on. These are likely to more avail-
have to be composed for each language. able to Ada. Recently, usable data have started

to emerge from the aerospace firms' experience
3.1.7.1 Jovial. with Ada. While encouraging, the interpretation

of interlanguage coding rates is beyond the scope
The new LOC actually composed is the new LOC of this paper.
required minus the LOC that are reusable. Since
JOVIAL has no reusability, this figure is the new 3.19 Project Attrition Percentage (Column N).
LOC required.

This represents the fact that people will leave the

3.1.7.2 Ada. project.

The new LOC actually composed is the new LOC 3.1.9.1 Jovial.
required minus the LOC that are reusable. We assume that a person will stay on the project

3.1.8 Unadjusted Yearly Maintenance Manyears for three years at the start of maintenance. i.e.,
(Column L). 33 percent of the maintenance staff will turn over

annually; at the other extreme, 2008, we assume
This is the LOC for new requirements divided by that the maintainer will endure 1.5 years, i.e., a

- the productivity rate for new development plus 67 percent turnover rate. Attrition percentages
the predicted yearly errors divided by the produc- are straightlined between these endpoint values
tivity rate for error correction. In the case of during the maintenance phase.
Ada. a burden is included that amounts to half of 3..9--da
the cost of actually compassing the code reused. 3.1.9.2 Ada.

3.1.8.1 Jovial. We assume the inverse of JOVIAL, starting with
a 67 percent turnover rate in 1990 straightlined

The productivity rate for new development of to 33 percent in 2008. This reflects increasing
JOVIAL is assumed to be 2000 lines per year per availability of Ada programmers over time, and
person (see 3.0). The productivity rate for the converse for JOVIAL. It would be plausible
JOVIAL error correction is assumed to be 2000 to argue that Ada programmers will be readily
lines per year per person, also. available in 1990: this would be a less conserva-

tive assumption, but more favorable to Ada.
3.1.8.2 Ada.

3.1.10 Adjusted Yearly Maintenance Manyears
The productivity rate for new development of (Column P).
Ada is assumed to be 3000 lines per year per per-
son, and that of Ada correction is assumed to be We assume equal costs for training a new staff
3000 lines per person per year. member for JOVIAL and Ada. Thus the

adjusted yearly maintenance manyears is the
The reason for adding in the burden is that reuse unadjusted maintenance manyears plus the cost
is not free. We have to include the cose of locat- of training the new staff members. Training cost
ing, evaluating, purchasing, integrating, testing, is determined by multiplying the unadjusted
and documenting the reusable code. As maintenance manyears by the project attrition
expressed here, the burden is almost certainly too percentage and dividing by six. (Training costs
high, but does reflect our desire to avoid any are assumed to be 300 hours or 1/6 manyear for
unduly liberal conclusions, classroom and on the job development.)

60

t

1. 11 Cumulative Adjuste,' Manyears. On the other hand, because of the presumed
higher maintainability of Ada code we might

This value represents the accumulating sum of expect that total system replacement wouid be
indiidua yealyforestalled, or that the step function replacement

concept could give way, because of Ada and the

3.2 WrtCaAsmto.associated methodology, to a continuous refresh
concept which would obsolete the idea of totally

SThe following. subparagraphs describe those replacing a system. Be that as it may, by evaluat-
;.' ing both the 1999 and 2008 deltas we are adopt-,.t

assumptions which differ from the nominal case
in that they are considerably more pessimistic for ing the most conservative possible posture based

Ada than the already conservative nominal case on a plausible set of assumptions which are
clearly laid out and available for alternative simu-assumptions. lations.

We believe this set of assumptions represents the
lower bound on reasonable Ada assumptions, in 5.0 RESULTS
that stricter assumptions begin to appear
improbable, and would simply represent a future Key findings of the model are given in Table III,
failure to follow all of the Ada methodology gui- and described in sections 5.1.5.4. Section 5.5
dance developed for our project. In that case presents the dollar impact in present dollars.
Ada would have been applied as if it were a tradi- Finally, section 5.6 describes the relative contri-
tional language. this would lead toward a tradi- bution to savings of software reuse. as shown in
tional maintenance cost profile. Table IV.

3.2.1 Changes To The Ada Nominal Case. 5.1 The Nominal Case In The Year 2008.

We have introducted two changes to the Ada The model predicts 962 manyears of maintenance
nominal case set of assumptions to derive this phase effort for JOVIAL, versus a lesser 348
still more conservative projection. manyears for Ada.

First t)f ail, the error removal rate for Ada is 5.2 The Nominal Case In The Year 1999. L
assumed to be less than that of the Ada nominal
case, leveling off at .05 (of two percent) after six The model predicts 356 cumulative manyears of
years. This change would be expressed in the effort in the maintenance phase through 1999 for
vector variable, VI (1, JOVIAL, versus a lesser 174 manyears for Ada.

Second, the productivity differential of Ada pro- 5.3 The Worst-For-Ada Case In The Year 2008. _
grammers is moved to 2500 from 3000, nearer
parity with JOVIAL (2000 lines per year). The model predicts 998 manyears of effort for

JOVIAL in the maintenance phase through 2008,
3.2.2 Changes To The Jovial Nominal Case. versus a lesser 416 manyears for Ada.

The single change to the set of nominal case 5.4 The Worst-For-Ada Case In The Year 1999. L
JOVIAL assumptions is that the yearly predicted

, errors will reach .1 (of two percent) in nine years The model favors Ada through 1999 timeframe
(via intervals of .1 (of two percent) in all nine with 208 manyears of maintenance phase effort
years) rather than in nineteen years. and stabilize versus a greater 359 manyears for JOVIAL.
at a lower .05 (of two percent) in the tenth year.

The reader will note that even though the rate of
4.0 METHOD removal of JOVIAL errors speeds up in com-_.

parison with the JOVIAL nominal case, the
We made an a prior decision to base our findings manyears projected increase somewhat. The
on two deltas, the cumulative delta of the year accelerated reduction in errors speeds up the ser-
2008, and the cumulative delta of the year 1999. vicing of new requirements, which leads to a
The latter delta is of considerable interest larger JOVIAL code body after 1991 under
because historically, large systems are frequently assumptions intended to favor JOVIAL! r
abandoned after ten years of deployment.

61
I

.. ,"- - ..

..-....-.-. ,..,-.".-''.-'-,

Table IlI. CUMULATIVE MAINTENANCE PHASE COSTS JO VIAL/ADA ,. _.
IN 1999 AND 200q (IN MANYEARS)

YEAR JOVIAL ADA.

NOMINAL CASE
2008 962 348
1999 356 174 "

WORST-FOR-ADA-CASE
2008 998 416
1999 359 208

Table IV. CUMULATIVE MAINTENANCE PHASE COSTS. JOVIAL/ADA,
WITH AND WITHOUT ADA REUSE (IN MANYEARS)

SA VINGS
DUE TO

YEAR JOVIAL ADA ADA. NO REUSE REUSE

.NOMINAL CASE
2008 962 348 689 56%o
1999 356 174 253 43 o

WORST-FOR-ADA CASE
2008 998 416 817 69o
1999 359 208 301 62% ..

5.5 Dollar Impact Of Ada Versus Jovial. In the worst-for-Ada case, sixty-nine percent of
the savings is due to reuse by 2008, while sixty-

In the most conservative plausible scenario, (the two percent is attributable to reuse through 1999.
worst-for-Ada case in 1999) a savings of over These findings are reflected in Table IV. .. -

eighteen million dollars would arise from select-
ing Ada. In the most probable scenario (Nomi- 6.0 DISCUSSION
nal case in 2008) the dollar differential would 6.1 Calibration. ''.:
grow to seventy-four million dollars. These dol-
lar estimates are based on constant present cn t rl hm ht tmanyear costs ofq S120,000. A S150.0010 figure A conventional rule-of-thumb is that seventy :..

percent of a system's costs (assume a ten year
might have been -nore appropriate, but the lesser life cycle) is maintenance. If we assume 500,000
figure gives a more conservative result. lines of JOVIAL code were produced at 2000

5.6 Contribution Of Reuse. lines per manyear then 250 manyears would have
gone into development. A total of 356 years is

We can isolate the contribution of reuse to the predicted by the model in Table III to be the
maintenance cost. Adding the development and

maiontenance phase savings of Ada. In the nom-
inal case, through the year 2008. a fifty-six per- maintenance figures gives 606 manyears of whichthe maintenance portion is nearly sixty percent..-.'-
cent of the savings are due to reuse. Through This a posteriori calibration suggests that the
the year 1999. forty-three percent of the savings assumptions applied to the model are both realis-
are due to reuse. To develop these results we tic and conservative.
simply altered column I and column L in Table tca cosvie
II. The coefficients for V2 (see 3.1.6.2) were set
to zero in column 1, the cost of reuse (see 3.1.8 A second a posteriori calibration comes from a
and 3.1.8.2) was removed from column L. nearby firm which was able to demonstrate 40.'.-

62

......................-...-. ..-..........-..-. .- .• .- ..-...- _" , -- *' o - - - ' . * -. . ."- .. '. °" "* -. . . .

"S e--

reuse during development, on a 4,000 line (est.) using Ada on the project being examined here
project. The vector, V2 described in 3.1.6.2, will be considerably less than the maintenance
appears to be unduly conservative in light of this cost of using JOVIAL. We expect reuse to be
experience, related to us as this paper reached its the main contributor to the lesser cost.
final form.

6.2 Cost Impact Of Management's Reuse Poli- 7.0 GENERAL CONCLUSION
cies In The Maintenance Phase. A recent LMSC
study expended significant effort to spell out Our review of maintenance costs' sensitivity to
development procedures that would promote reuse is telling. While our projections must be
maintainability. Discussions there of safe struc- treated as highly tentative, macro issues in reuse L- -

tures. cost impacts, reusable generics, coding can have (and have had at LMSC) a decisive

techniques, maintenance, and methodology were influence on the acceptance of Ada (and there-
designed to communicate software development fore the acceptance of reuse).
strategies that can yield highly modular code suit-
able for a future maintenance technique of swap- However, many times we in the technical Ada
ping in reusable modules. We assume that community have not been meeting the needs of
management can control to some extent the decisionmakers for understandable impact projec-
exploitation of software reuse technology. tions associated with macro issues in reuse. As
Clearly, managers could suppress the practice noted at the outset of Section 2.0 above, micro
entirely; presumably, they could also encourage issues can not gain funding unless the macro
reuse: this is what we see happening now at issues have been sold to the people in the most
LMSC. responsible positions. We at LMSC have sold

the maintenance cost reduction macro issue, and
6.3 Conclusion Of Case Study. the result is that use of Ada has been funded for

a major program.
Based on the assessment presented above, we
conclude that the maintenance phase cost of

63

.
.

.o .

. , ." w i 6 - ------ ".-----.----7

L

RESUME

Thomas D. Arkwright

RECENT LEADERSHIP EXPERIENCE (LMSC 1982-1985):

" Designed/funded/managed 63 miniprojects (over 100 people) in Software Engineering to assess and

* manage impacts of Ada on LMSC projects.

Funded/established/headed the new Ada Technology Support Laboratory.

Leading the AIDER project, an editor-resident Ada expert system for Ada programmers.

Administered a series of LMSC training development projects to evolve a second generation of training
materials for Ada.

Administering LMSC methodology development for architecting Ada systems (tied to DoD life cycle
reviewers).

Designed/funded/leading the GIT-Ada project, an artificial intelligence system to teach Ada PDL to
CDR reviewers.

Designed/leading evaluations of Ada compilers, advanced architectures, and other Ada tools.

EARLIER LEADERSHIP (1973-1982):

DLIFLC (a joint DoD installation) 1975-1982.
. Designed/funded/initiated the Instructional Technology Department

(computer/video R & D for training.)

Responsible for all technical software development -

and deployment (non-administrative software) 1975-1982).

UNIVERSITY OF QUEBEC

Led research projects and research classes as Assistant Professor (1973-1975).

RECENT EXPERIENCE (LMSC 1982-1984):

Developed $2,500,000 in new business in 1984 (LMSC's first Ada revenues), in three programs.

Set forth the LMSC Ada Training Plan.

Delivered first Ada training to managers and lead programmers at new LMSC Austin Division.

Converted the first DoD project to use Ada (effected change from baseline (JOVIAL) to Ada for a
multibillion dollar USAF distributed communications project); concluded December 20, 1984, by custo- p
mer. project management. and LMSC management.

Participated in proposal work.

ACADEMIC WORK (1962-1974):

SMcGill University (Ph.D) computer simulation of a natural language system, numerous awards, 1969-
- 1974).

64

..._.-. - ..- 7.. . * . -. • -. , , o ,. . . - ° • . ° • i l

Notre Dame University (Master's) merit scholarship. 1969-1971.

- " - Notre Dame University (Bachelor's) competitive awards, 1962-1966.

RECENT CONSULTING EXPERIENCE WORK (1983-1985):

IBM (Santa Teresa Labs) -

Designed/directed development of the user manual for a new main-frame fourth generation database %
product: The Information Facility (TIF END USER Manual: IBM Publications Number TBD).

Digital Research Inc. (DRI) -

Coded the QA software for a distributed network and file server.

USAF (CINCPAC/Hawaii) -

Delivered a course: Ada for Managers

Commercial (Northern California)

Contract development of custom turnkey multiuser business applications.

I

r-

' ~65•"""
, ;""

,. *.p

* -- -

I

0 V
I-

.*1

0
I- -

z L
- z ~

s.- -
__ - ~ -
-

U,
U,

0
turn

a..

.9-

L

66
-. ' -1

0:

I- U
C.) CL

00Z

4)0
0oz (A C.

Z; 0. E

0 (0
C/ a)

0) Cl

U)) cc0.
C 2

LU)

C U

67 . ~ U

b,
'I

I,

IN

I

S CoK z
'I)0 a) (I)a)

_ U) U) a) (9Lp z

w
0

I

.4

68

I

...

C/) 2

0 0

z a
__ .2c.

U U.w 4)

c,. a)E

ci) Cu UC

2 CD

a)J 20 Qc

0 CL

2 E

C/,

69

LUL

16..

z (

00

j cz Go

0 L

LL-J

Wco
wn 0

wz o
ZO) co

- CM

zz

i C,
>0

00

71

(Z~ 00u

0> LU
LUr

00

C/)i

< 0 CV) M c0C,,
-,C/)~C2f

LU 00 IMCV M O
LIC lommm

z

C,,LU 0

z-M

72 z

- - - - h - - -----------

F

I.

U)
0)

U) 0
0 0z Cu U Cuo .; .~ Cu
0. 0

(/1, 0 -; U) - 0
- C

2 V C Cu 2
.~ 0 ai 2

2 2
(ME) 0 0 Cu 0

0) *0 0)ci, 0 Cu .22
U) C .0

O 0 Cu 0 0 L
C C 2 -
0 .0 U) -

p Cu'I,
Cu
- .0 0 0C 0. U) Cl)
0 Cu 2 Cl)I- 0 - 0 0

-I

I

~ Ir

1~

-.3

F

.....................................

WORKSHOP ON REUSABLE COMPONENTS
OF APPLICATION SOFTWARE

Tom Bowen
Boeing Aerospace Company

Software Technology
P.O. Box 3999

Seattle, WA 98124

The ;bilowing section contains a position paper on reusable software. Section 1 describes BAC
capabilities and experiences related to developing and reusing embedded software. Section 2,
summarizes the objectives of the Information Science Technology organization and contains the
resume of the principal investigator for reusable software.

(a) Criteria for selecting software application
SECTION 1. POSITION PAPER: Technology areas, functions, and components as ,
Considerations for Reusable Software economically reusable (e.g., degree of com-

monality between applications).

(b) Characteristics that promote reuse of
Industry capacity to produce reliable, main- software (e.g., generality, modularity,

tainable software for embedded systems is not independence, self-descriptiveness, and
keeping pace with demand. One accepted simplicity). These characteristics should be
approach to reducing costs is to reuse software the basis for development standards and
that has been developed for similar applications, techniques and for measurements indicating
The expected benefits include (1) increased pro- the degree of reusability.
ductivity through avoiding duplication of effort c tcian(c) Criteria for accepting and retaining a ii ,
and (2) increased quality and reduced risk software entity for reusable library (e.g.,
through use of proven products. frequency of use and degree of reusability).

Successful reuse of embedded software depends (d) Validation and verification responsibilities
on (!) techniques for developing software that is for reusable library entries.
inherently reusable, (2) methodologies for reus- (e) Access and security considerations for a
ing software in the life cycle, and (3) tools and a reusable software library.
library system that promote the reuse of (f) The impact of reusability methodologies
software. Initial reusability thrusts should and techniques on existing DoD policies
emphasize building on current technologies to and standards.
enable economic reuse of software in the near
t'uture. For example: reusability levels-of- (gi Product liability should DoD supply reus-
abstraction should be compatible with phases and able software to a developer.
products identified in DoD-STD-SDS; techniques (h) Use of knowledge-based engineering and
should take advantage of features provided by rapid prototyping capability.
Ada. and reusable library systems should be com- i) Types of incentives that can be provided to
patible with APSE tools. Long-term efforts encourage development and use of reusable
should include automation of software develop- software and the impact of reusability on
ment processes and software generation and developer inventiveness.
should not be constrained by current technology.
Other specific areas need to be addressed in T,.chnology transfer approach and mechan-
evolving a reusable software technology and inm wr integrating with system acquisition
should include: rcice. including training.

SECTION 2. PERSONNEL level of competence in all pertinent technology
areas, for leading in development and implemen-

The following paragraphs contain a brief tation of concepts and systems relative to the "
description of the goals and objectives of the overall acquisition, collection, processing, reduc-
Information Science Technology organization and tion, display, control, encrypting/decrypting; for
the resume of our principal investigator for reus- control of security; and for leadership and focal
able software. point direction of information science technology

and applications for BAC. In coordination with
other technology organizations, Information Sci-

Information Science Technology ence Technology has joint responsibility for all
systems incorporating computers, displays and

The Information Science Technology organization controls, and has primary responsibility for com-
is responsible for developing and applying a high puter and display related subsystems.

(..

L

r

"76 -

- .-. --.-- -. ,-- --

RESUME
THOMAS P. BOWEN

EDUCATION
BS, Mathematics
University of Washington, 1970

EXPERIENCE

Mr. Bowen has 20 years experience in computer-related fields and 15 years experience with Boeing
Aerospace Company. He has held project lead engineer positions in software systems, software design,
and software test organizations and has supported proposals, conceptual designs, and analyses and
evaluation efforts. Major projects and proposals supported include: B-i Avionics, Morgantown Per-
sonal Rapid Transit (MPRT), Digital Avionics Integration System (DAIS), Precision Emitter Location
Strike System (PELSS), SATIN IV, ASW/Standoff Weapon, and SPADOC. Research and development
contracts and proposals supported include: Software Interoperability and reusability, Quality Measure-
ment for Distributed Systems. SPADOC Interim Communications and Data Base Manager,
Specification of Software Quality Attributes, and Common Ada Missile Packages (CAMP).

Mr. Bowen is responsible for the 1985 Reusable Software IR&D effort. The overall, multiyear objec-
tive for this effort is to implement a computerized, reusable software library system to support
company-wide software development for embedded systems.

For the past four years Mr. Bowen was working on software quality metrics R&D contracts with the
Rome Air Development Center (RADC). He was the principal investigator for the Specification of
Software Quality Attributes contract (RADC) contract F30602-82-C-0137). The prime tasks for this
contract were to develop the methodologies and procedures for specifying and measuring software qual-
ity, to refine the quality framework, and to prepare guidebooks for use in specification and evaluation of
quality for Air Force command and control software. He was also involved in the efforts for enhancing
the RADC quality framework for distributed systems (RADC F30602-80-C-0330) and for interoperabil-
ity and reusability (RADC contract F30602-80-C-0265).

Prior to these assignments, Mr. Bowen developed a Software Development/Management Methodology
tutorial and a Software Development Methodology document. These presented a development model
and methodology recommendations in order to encourage a more unified company approach to software
development. He supported a project to install a message handling and retrieval system for SPADOC-3
in the Cheyenne Mountain complex-performing an industry survey of 14 data base management sys-
tems (DBMS) and an indepth analysis of 4 DBMS's to support recommendations. He contributed to an
AIA study of principles and policies for computer software acquisition (TMC1 18-7). He also has taught
a graduate-level, company-sponsored course in computer architecture.

RELEVANT PUBLICATIONS

Specification of Software Quality Attributes, Thomas P. Bowen. et. al., Boeing Documents D182-
IF 11678-1. -2, -3. November 1984 (final report, prepared for RADC under contract F30602-82-C-0137)

Software Quality Measurement for Distributed Systems, Thomas P. Bowen, et. al.. RADC-TR-83-175
(3 volumes), July 1983

Software Interoperability and Reusability, P. Edward Presson et. al., RADC-TR-83-174 (2 volumes),
July 1983

77

..............................

I
Software Development Methodology, Thomas P. Bowen, Boeing Document D180-26176-1, October
1981

Conceptual Framework for Reusable Software, Robert W. Lawler and Thomas P. Bowen. Boeing Docu- , ,,
ment D180-25964-1, February 1981

RELEVANT TECHNICAL PAPERS AND PRESENTATIONS

"Quality Metrics in Software Development", Spring COMPCON 85, San Francisco, CA, February 1985,
IEEE 85CH2135-2, P. 308

"Software Quality Metric Data Collection", SESAW III, San Francisco, CA, October 1984 2-.,

"Metrics for Evaluating Software Quality", 1983 Pacific Northwest Software Quality Conference, Cor- " -

vallis, OR, September 1983

"Software Quality Measurement for Distributed Systems", RADC Distributed System Technology
Exchange Meeting, Griffiss Air Force Base, Rome, NY, June 1983

78L

.p -

..

12 .

'L-

. ~~~~~.~ .
.

dc

oGo

LLJ49

WCIO
OLAJ

om m

0.A ..N U

0

:c LI-

Zj W

79

0. C%4 0. I

zz

L / L .)4

mu) I

C5 LL

IA =

LA.

0
Lki

V) -j c

LJL.

08

ee

0

0 &

• --

,--, '- -c I-- .-.-

•n -c 0 0 0 0. cm 0 0 0

9-.]

CD' w- U. -..-R'=

o d

. ,- -

-".11 ""

CX&. CD.c

?--J

u, w --

cm L"J U. =

- U CD, 40 = m-aL

-- a. Uc Q :-

<D LJn =

a. U- LaJ 3

0 0 a 0 0 0

CC.. - . ,.. .--- ""

.- " -- " . ,. _ . .-

-. ~ ~~ . . .*.'~

A PHASED APPROACH TO ADA PACKAGE REUSE

Dr. Bruce A. Burton and Mr. Michael D, Broido

Intermetrics -
"

29 January. 1985

Abstract '

This paper discusses some of the significant issues associated with the reuse of Ada(EM) pack-
ages. It presents the authors' strategy]br developing a library to support Ada package reuse. The
paper presents the functional description of a phased implementation tbr a software library. It
also delineates the different capabilities required to expand the package library from one serving a -
single project to one serving multiple companies at many different sites. ,

Introduction: approach for gradually building up these
functions in a way that makes partial results use-

A key objective of the Department of ful, with later releases increasing the utility of the
Defense, in the program which led to the crea- total package. Since the production and support
tion of Ada. is the reduction of life-cycle costs of Ada packages is intimately related to a
for the development and maintenance of software development environment's
software. An important component of that cost configuration management system (CMS), this
reduction will necessarily involve the elimination support functin forms a natural basis upon
of the repeated practice of reinventing a software which to build an expandable Ada package reuse
function for each new target system or applica- capability. To the CMS and the software library
tion. If an existing piece of software can be controlled by it, we intend to add an Ada
reused to suit a new situation, considerable say- Software Catalog (ASCAT) for on-line user
ings can accrue in the specification, development inquiry and report generation. In the final
and verification of the software which includes phases, additional features will be added to sup-
that component. port multiple sites anci sharing of information %

among the users of each package.We are pursu-
Software reuse is not without its disadvan- ing a strategy for providing an initial reuse capa-

tages, however. Any system designed to promote bility within a narrow group of users. By gradu-
reuse, such as the one presented in this paper, ally adding new features, a complete system capa-
must recognize and address these drawbacks. ble of supporting reuse across diverse projects,

target machines, and companies is built up. Our
Problem: ultimate system will include the combined

Intermetrics is actively involved in a pro- features of a comprehensive configuration
gram to identify a method of promoting the reuse management system, a catalog of available
of Ada packages. The system we are creating is software, a library for the access and distribution
designed to recognize and reduce the impact of of software, and a bulletin board system for corn-
past problems which have inhibited software munication among all users interested in a partic-
reuse, while allowing the gradual build-up of ular package or topic.
functionality. This way, partial products have
utility while new features are added. Reuse System Motivation and Description:

Approach: Background:
Ada packages form a natural unit around A software designer or implementor, in

which to build a software reuse capability. To seeking to minimize his development time, costsK fully exploit the work that has gone into previ- and risks, needs the answers to several questions
ously created packages requires an extensive list in preparing his plan to create a software solu-
of functions. We present here a practical tion:

-3

....... -- ." _ +O__l* . %.... " "lll l ...-.........-. -... .--. '- " *,-_ +-...-.

(1) What software is available for considera- software through the assembly of well-
tion? encapsulated functions.

(2) Is it suitable to my needs (functionability, Yet there is a dark side to software reuse.
interfaces, size, speed, costs, availability on Companies which have spend considerable
my target system, test and debugging aids, resources creating a software capability are reluc-
limitations, etc.)? What adaption features tant to provide their tools, through a common
are available? library, to their competitors. Programming by the

composition of existing pieces is not as much
(3) In what forms can I get it (specification, c ottas ,"docu- as writing programs from scratch. In-housedesign, source, object, executable, "experts" lose their special status if open. well-

mentation, tutorials)? documented code is available to anyone who

(4) What changes are pending or under con- needs it.
sideration? The very economic incentives which reduce

(5) How do I get it? From whom? From life cycle costs can work to the disadvantage of
where? At what cost? What restrictions the developers as well. Potential drawbacks
apply to my use'? What support is available include: higher initial package development costs,
if I have problems or need changes? Can I performance degradation due to excessive gen-
make changes to it myself, and if so, what erality, the lack of component composition para-
help do I get? digms (Standish 83), closeness of fit issues,

(6) How do I get notified of problems and module update issues, the wider impact of errors,
changes? the first package available (which by its very

large scale software library/CMS system. existence tends to set the standard) may not be a
good one, the lack of standardized specificationsif used as part of a development environment or for the sharing of packages across projects, and

network, can provide at least partial answers to
all these questions. A limited software catalog ack of stable for thi do c mon
could certainly provide answers to questions 1, 2, packages suitable for inclusion in the common
3, and 5. Additional information may be needed library.
to answer the others. Phased Implementation Supporting Software - --

Significance of Ada Package Reuse: Reuse:
We are constructing an Ada package libraryThe solution to any problem, in order to

of the decision makers, must as a multi-phased project that initially offers agatinf accptae restricted set of software catalog functions. As
satisfy three sets of criteria: it must address the Ada packages become more prevalent, the Ada
technical, economic and political requirements.
The bulk of literature on requirements and sys- package library will be expanded to include
tems for the reuse of software has focused on the higher levels of formality and automation, a

technical issues. higher degree of interaction with the
Configuration Management System, and exten-

The principal advantages of software reuse sions to support library interaction across com-
are economic: reduced life-cycle costs through panies and machines. Our strategy involves the
increased productivity, shorter schedules and development of seven distinct phases. Some of
reduced risk. These in turn allow developers to these may be built in parallel as external needs
produce more general packages and put greater and funding evolve. A functional description of
flexibility into the hands of the end user. Know- each of the phases follows.
ing that software is being produced for reuse over
the long term can encourage better designs with Phase 1: Analysis and Requirements Definition
more emphasis on modern development tech-
niques and coding practices. Creation of software During this phase the requirements
for general applicability leads to the development definition of the package library is being formu-
and use of standards, which further reduce life lated. Baseline capabilities as defined by the Ada
cycle costs. More thorough design. documenta- Language Reference Manual (DoD83) are being
tion and testing are encouraged. Much of the examined for reuse implications. Previous
power of UNIX(TM) comes from its standard- software libraries, such as COSMIC (NASA 84).
ized. simple interfaces and the composition of IMSL (IMSL 76), and the Statisfical Package for

the Social Sciences (SPSS), will be analyzed so

84

-~~~~~~~~~~~~~~........"....-........ -.. ". :... - . ._-.. ,-- . . -

that the requisite data items that facilitate the sent to the ASCAT.
description of generic software components can
be identified. The sponsoring organizations will Phase 4: Integration of Standardization Support

*be contacted to illuminate features which help Tools
and hinder reuse. Specific information unique to The early versions of the ASCAT willk

. Ada packages, which should be included in the employ a standards policy for submissions; the
, software catalog, will be identified through an policy will be manually enforced. Initially, sub-

analysis of our present collection of Ada pack- mitted Ada packages will be screened for adher-
ages. Alternative sources for related information ence to coding, reuse and minimal documenta-
(such as design documentation, package tion standards by visual examination (code walk-
specification data, user's guide, etc.) need to be throughs). During Phase 4, standardization will
identified, and mechanisms for readily extracting be ensured by the integration of standardization
relevant data need to be designed. support tools, such as Intermetrics' Byron (TM),

into the package library system. These tools will
Phase 2: Initial Software Catalog aid package standardization by supporting the

Based upon the information collected in scanning of newly submitted packages for adher-
Phase 1, we will design a kernal Ada Software ence to the reuse conventions (e.g., checking that
Catalog (ASCAT) for the storage and retrieval of all required reuse data items are present). Also
Ada package reuse information. This initial sys- during this phase, the packages which had been

, tem will simply support the storage of data base previously entered into the library will be
" records that specify the purpose, specification, evaluated to determine discrepancies between the

algorithm, keywords, author. and other relevant library contents and the enforced standards.
package identification data. Data collection and
entry will be automated. a processing tool will be Phase 5: Expansion of the User Community
used to extract necessary data and to input and The initial versions of the ASCAT will
format the data into the software catalog. Since represent fairly passive entities. That is, informa-
the catalog will be developed around an extensi- tion flow (except for explicit inquiries and report
ble data base management system, support for generation requests) is primarily directed from
interactive query and report generation will be the outside world in. During this phase the pack-
automated. This system represents a limited age library system that contains the ASCAT will
beginning; software authorization control and dis- become a more dynamic entity. A user commun-
tribution will remain unsupported in this phase. ity will be added to the system. The inclusion of
The kernel system will also lack support for electronic mail will allow an increase in the com-
automated error notification, change notification, munications traffic between the Ada package
and standards enforcement. The initial software library and the user community. Now, based
catalog will be a passive entity, accepting package upon library and CMS events (such as new
description data when provided by the processing entries, error notifications, standards changes,
tools or manual updates. It will respond to user etc.), the Ada package library can automatically
queries and report requests. Interaction between notify the affected user community through the
the software catalog and the Configuration electronic mail system.
Management Stem (CMS) will be entirely
under manual control. The expansion of the user community will

provide additional problems for the Ada package L
Phase 3: Automated ASCAT/CMS Interface library system. With the development of the

user community a mechanism for both
During this phase, an interface will be system/user and user/user interactions needs to

developed to facilitate communication between be established. The electronic mail system might
the ASCAT and the existing Configuration be used for one or both of these functions. The
Management System. This interface will allow precise approach taken wil! address the problems
automatic update by the CMS of several impor- of separate users in different groups. Preliminary
tant ASCAT data items. Through the use of the steps to address security concerns will be incor-
CMS, information on package version data, poadds e i o rs le r
authorization control, error identification and poe
status, and related documentation (such as design Phase 6: Automated Catalog and Library Interac-
specifications, user manuals, test data and sample tion "
output, object size, etc.) can be automatically

85
. • . . -..

... - '. .-, -. -'-...... " . -., . . -., - . -,'. .. . * .- - - , . . . -i..°.- - . -. - -.. . .• , -- - - . - -. : . ,

I-

This phase will be characterized by a fully distinct systems will be added, and a method for
automated system of interaction between the pro- charging remote users will be included.
gram library and the CMS. Results of the The library and distribution system will
mechanized standards enforcement, as developed include positive feedback of the incorporation of
in Phase 4, are automatically recorded in the changes released by the package owner, even in alibrary and catalog. Manual overrides (via docu- distributed network or multiple system -

mented deviations and waivers) are permitted, configuration. This will allow the owner of the
but a flag is set in the library and catalog entries, package to archive obsolete versions which are no . _

This phase will also include an automated longer in use anywhere in the user community.
system for distribution and authorization of In addition to the (Phase 6) ability of the
software and related products. This system will users to communicate with the library and CMS.
include a software order entry capability, with the the library/CMS to send unsolicited data to the
ability of the owners (controlling organization) of users, a "bulletin board" will be added. This bul-
library entries to restrict the release of letin board is a multiple-message service to which
specifications, source code, etc., by individual anyone with access to the system may send mes-
item or by item class (source, object, sages. In particular, this gives the equivalent of
specifications, test information, etc.). The order- an electronic users' group so that the diverse
ing and distribution system will include the ability users of a package may share information among
to defer the release/distribution to a new user themselves, independently of the package owner.
until the owner has given manual approval. The bulletin board differs from the electronic

The order system will maintain lists of users mail system added in Phase 5 in that the mail
who might not otherwise receive update informa- system requires an explicit list of addressees,
tion. For example, this can be off-site users who whereas the bulletin board facilitates communica-
are not immediately accessible to the CMS. It tion among parties who are initially unaware of --
can include users who have supplemented the set each other (and their mailbox ID's). The bul-
of test cases and would need to know about letin board facility will have the ability to be par-

changes to the base set of tests. It can include titioned, so that a separate "board" can be made
casual" users who are trying out a package, but available for each topic or package. The bulletin

have not yet fully or formally incorporated the boards can serve as a forum for informal position
library package into their new programs (e.g., papers, searches for new uses and adaptations of
they are developing a prototype). the covered packages, discussions about the

The ordering system will allow the user to desired priority of pending changes, suspected
specify the desired action in case changes are bugs which have not been formally verified and
made or serious bugs are found. The user could isolated, workarounds for known problems, infor-
specify such actions as performing automatic Mal discussions about potential extensions. etc.
updating, sending the updated files but not With the bulletin board concept, separate
integrating them, simple notification that a bulletin boards may be added on topics for which
change has occurred with a brief description of no packages currently exist. This allows users to
what it does, or do nothing. The system will search for uncertified capabilities, developed or
aggressively notify any users who are not on-line under development by others, which might be
'or have a permanent mailbox) by creating hard- available by the time the new user needs it. This
copy notification suitable for sending through the forecasting can serve to lower costs by reducing
regular mail. the amount of parallel development that would

be done. It will also allow the new user to sug-
Phase 7: Multi-Site and Multi-Company Exten- gest changes early in the design and development
sions process. These changes help to generalize the

During this phase. additional restrictions package so that it can be reused in more prr-

can be placed on distribution of software items, grams than originally intended.
such as licensing, purchase agreements (implicit
agreement to be billed for products delivered), Summary/Conclusions:
and restrictions on the number of machines on Software reuse is an issue currently receiv-
which something may be used without additional ing a lot of attention. The reuse of Ada packages
actions occurring. Enhanced security features offers the software developer significant oppor-
will be added. Methods for sharing libraries in tunities to achieve high productivity and to lower

86

• ., "

life-cycle development costs. Although Ada pro- (2) IMSL 76- Reference Manual, International
vides a natural vehicle for encouraging software Mathematical and Statistical Libraries, Fall,
engineering reuse, the same technical and politi- 1976.
cal obstructions that have limited reuse in the (3) NASA 84- NASA's Computer Software
past will once again impede the sharing of Management and Information Center,
software engineering products across the projects. "COSMIC Software Catalog, 1984 Edition."
The Software Technology department within University of Georgia, 1984.
Intermetrics is actively investigating the problems
that hinder reuse. We are determined to find (4) STANDISH 83- Standish, Thomas A.,
solutions to these problems and to collect and "Software Reuse", presented at the

reuse Ada packages. Workshop on Reusability in Programming,
Newport, Rhode Island. September 7-9,

While a large-scale Ada package library sys- 1983.
tem that is tightly integrated to a configuration
management system may provide a reuse Trademarks:
mechanism that offers maximum long-term
benefit, the construction of such a system would Ada is a trademark of the U.S. Department
necessitate the expenditure of large amounts of of Defense (AJPO).
up-front money. A phased implementation that
starts with a kernel Ada package library that is Byron is a trademark of Intermetrics, Inc.
steadily extended to a large-scale package library
system can be used to reduce this initial outlay. UNIX is a trademark of AT&T Bell Labora-
In addition, the phased implementation approach tories.
offers the opportunity of incremental success
which might provide the necessary economic
catalysis for continued development. Biographies:

This is precisely the approach that we are Dr. Bruce Burton is the Manager of the
employing within the California Division of Software Technology Department at Intermetrics,
Intermetrics. The California Division is heavily Inc., where he has worked since 1981. He holds
involved in the development of applications an M.S. in information and computer science and
software for the aerospace industry. In order to a Ph.D in physical chemistry from the University
improve our software development productivity, of California, Irvine. Dr. Burton's department is
we are currently building a facility that promotes responsible for the investigation of software
the automatic extraction of package reuse infor- development problems that hinder the cost-
mation from on-line design documentation and effective construction of reliable software. The
source code. The information will be stored in a specific areas addressed by current research r
data base system called ASCAT (Ada Software include Ada software reuse and real-time pro-
Catalog) that supports the storage and retrieval of gramming issues in Ada.
package reuse information. Distribution of Ada
packages will initially be informal and no direct Michael D. Broido received the B.S. degree
interaction will occur between the ASCAT and in mathematics from the California Institute of
our configuration management system. A-s we Technology in 1970, and the M.S. degree in com-
iron out the difficulties with the ASCAT and puter science 'rom the University of Southern
refine its capabilities, we intend to continue our California in 1973. He has been with Inter-
phased implementation plan and to increase its metrics since 1983 and has been involved in
use within our company. improving software engineering methods since

1976. His research interests include
References: configuration management, software quality

assurance, and performance improvement.II 1) DoD 83- Reference Manual for the Ada
Programming Language. MIL-STD 1815
and an ANSI Standard Document. ADA
Joint Program Office, Washington. D.C.
Reprinted by Intermetrics, Inc., March,
1983.

87

... ,..,-.. .. ,,-.-................. --.- ,..-..-.......?:-.......... -.-. -. ...-.

RESUME

MICHAEL D. BROIDO

EDUCATION

* MS, Computer Science
USC 1973

iI.

_ MBS, Mathematics
CalTech, 1970

2.1 Continuing Education Units

Holder of California Jr. College Teaching Credential in Mathematics and Computer Science. Completed
accredited training course in Ada

EMPLOYMENT HISTORY SUMMARY

Name of Employer Period of Employment Title

Intermetrics, Inc. May 1983 - Present Sr. Analyst
Data Card Corporation April 1982 - April 1983 Manager
Computer Automation, Inc. May 1979 - March 1982 Manager
TRW Comm. System & Services March 1978 - May 1979 Project Leader
Burroughs Corporation April 1970 - March 1978 Systems Analyst

HISTORY OF PROFESSIONAL EXPERIENCE
Relevant Area
Company Description
Duration

Systems Analysis, November 1984 to Present

Under IR&D funding, conducted a study entitled "Software Configuration Management for a Large Dis-
tributed Environment". Described mandatory and optional requirements to implement such as system.
Included substudies on "Software Rollbacks as a Fault Recovery Technique" and "Configuration
Management and Software Reusability".

Systems Engineering. Intermetrics, Inc., - 6 Months

Defined the tasks and system requirements for the Integrated Support Facility for the User Equipment
Segment of the Global Positioning System. Included hardware/software maintenance tools.
configuration management, test requirements, reliability/availability statistics, and various support
functions.Ada Training Course - 1-84 - 3-84

Completed a 10 week course on the Ada programming language. The course surveyed typical program-
ming language constructs e.g., looping and constructs, conditional execution constructs. data structure
constructs, subprogram constructs. etc. The course also covered the use of an Ada-oriented program
design methodology (object-oriented design). In addition, the course examined the role of Ada con-
current programming features in the development of embedded computer systems. A class project was
included- my team developed a project management system.

Software Analysis and Development, Intermetrics, Inc., - 5 months

Maintained and upgraded database software for the collection, analysis, and display of contractor

88

%I.

performance for the Global Positioning System. Used a VAX/750 with Datatrieve, FMS, RGL and
FORTRAN '77. Specific duties include developing database access routines, extending data collect

* - software, extending and optimizing the database display program using both text and graphics, writing
utility programs, and upgrading user documentation.

Software Analysis and Planning, Intermetrics, Inc. - 3 months

Prepared the Program Management, Computer Program Development, Software Quality Assurance and
Software Configuration Management Plans for Intermetrics roles on the Post Mission Data Analysis for
an experimental infrared satellite. Outlined and developed evaluation criteria for a survey of available
software tools and conducted part of the survey. Served as deputy program manager.

Software Quality Assurance, Intermetrics, Inc. - 7 months

Developed division-wide tools, plans, policies and standards for software quality assurance and
configuration management according to MIL-STD-483, MIL-STD-490, MIL-S-52779A, etc. Tailored to
the needs and audited implementation of those items in various programs.

Software Management, Data Card Corporation - 12 months

Manager of Software - Planned, directed and coordinated six programmers, an aide, and a
secretary/librarian in producing standard and customized software for financial printing systems using
MICR encoding. Applications included disbursements, checkbooks, loan coupons and other cash
management functions. Worked closely with Hardware and Marketing departments on product plan-
ning, including hardware/software evaluation of several microprocessor-based systems for use in our ,.
next generation products. Principally used Data General NOVA and Eclipse computers with AOS,
RDOS, RTOS and stand-alone operating systems. Responsibilities included staffing, budgets, contractor
selection, and design/implementation reviews. '

(j Software System, Software Development Computer Auto. - 10 months

Manager of Software Development - Planned and directed the activities of eleven programmers, plus a
secretary, in the design, development and release of operating systems, language compilers, and data
communications subsystems, including a real-time multi-user mapped OS, a hard-core generating PAS-
CAL compiler, and a synchronous communications protocol handler. Participated in long-term strategic
planning and negotiations with outside vendors. Prepared budgets, salary plans, and performance
appraisals. Selected and monitored outside consultants and contractors. Outlined and directed a com-
petitive analysis (features and performance) among our new operating system (CARTOS), DEC's
RSX- 11M, Data General's RDOS, and Intel's RMX-86.

Software Quality Assurance, Computer Auto. - 24 months
Manager of Software Quality Assurance - Led a team of programmers in projects to ensure and enhance

quality of software products for CA. including acceptance testing, documentation review, development
and use of regression tests, and performance testing. Created and implemented standards for the
definition, development and release of software. Personally designed and implemented a test bed for
qualification of a real-time multi-user operating system and acceptance/regression tests for a single user
COBOL compiler and runtime interpreter. Active member of the Software Change Control Board. vali-
dating both form and content of new releases. F

Performance Measuring and Analysis, TRW Communications Systems and Services - 14 months -

Scheduled, designed, programmed, executed and documented performance analyses on and for real- e,
time data communications systems on Data General NOVA and Eclipse minicomputers. Created and
used external/internal hardware/software measurement tools, analytic and event simulation models,

89

" Xi

and remote terminal emulators to define, validate and predict such performance criteria as response
time vs. load, capacity planning, location and removal of bottlenecks, etc. As a senior staff member, I
also reviewed functional specifications, designs, schedules, documentation methods, quality assurance

*activities, programming methodologies, etc.

Performance Measuring and Analysis, Burroughs Corporation - 10 months -

Led a group chartered with the development and world-wide support of tools and techniques for
measuring and improving performance on Burroughs large systems (B6000/B7000 series). The tools
comprised a series of programs which allowed trained personnel, including customers, to do their own
performance analyses. Specific duties included: (a) planning and scheduling all phases of program
development; (b) scheduling and teaching classes in use of the tools and on advanced performance
issues; (c) consulting at various customer sites, including corporate headquarters to audit such areas as
performance, operations, programming standards, data base and data communications designs, program
development methods, etc.

Performance Measuring and Analysis, Burroughs Corporation - 12 months -

Member of Systems Performance Improvement group described above. Did the design, programming,
documentation and maintenance of a program which uses the system log to produce almost 200 tabular
and graphic reports on various system resources, elapsed times, turnaround, mix depth, etc. The pro- .-.

gram has the ability to analyze subsets of the log based on time intervals, selection criteria, etc. Also
consulted at customer sites and taught classes.

This work required detailed knowledge of the hardware, operating system, use and output of the com-
pilers, tools, data communications systems and data base management system.

Sales Technical Support, Burroughs Corporation - 24 months -

Member of the Marketing Support Activity, responsible for customer consulting and pre-sales activities.
The latter included presentations, demonstrations, and developing benchmarks that involved heavy data

' communication and/or data base applications, plus simulations, on Burroughs large systems.

,' Data Processing, Burroughs Corporation - 48 months -

Member of internal data processing organization, using a B5500. Specifically responsible for design and
programming of data base and applications to support engineering, industrial engineering and account-
ing activities in such areas as product structure (BOM) with revision control, product costing, product
cost forecasting, eliminating obsolete information, labor distribution and inventory pricing. Interfaced
with payroll, stockroom control, factory schedule and general ledger systems.

Publications:

(1) Broido, Michael D., "Exception Handling Improves Real-Time System Performance." Computer tp
Design, November, 1982.

90

........... *.. . .'.'
....*.-..., ..-..-; ..-...,,)..-.---.-.-.-.. , X .., : . .: . . -- =

.ANAGENENT ISSUES IN SOFTWARE REUSE:

AVOIDING NISUSE OF EXISTING SOFTWARE

A PRESENTATION TO THE

STARS WORKSHOP

APRIL 9-12, 1985

(3:

lqICNAEL 1. 11013

- INTERIETRICSo INC.

HUNTINGTON BEACH, CA.

n .

91

'~ Z'::-, " _._...',*.* .- ,-.,..* ... ,".-.,%-.,_ _ _ _ _ ~ .5 , * . * 2- -*, - ., -

gFIJS Is NOT FRFF OR AUTDMATI!

o REUSE OF SOFTWARE HAS SIGNIFICANT METHODOLOGY IMPACTS

- NEED METHOD TO PARTITION PROGRAMS FOR REUSE

- NEED UNIFIED COMPONENT COMPOSITION PARADIGMS

N UEED TO SEARCH EXISTING SOFTWARE AS PART OF

DESIGN PROCESS

- REUSE IS LARGELY A BOTTOM-UP BUILDING METHOD

9 GENERALIZED REUSE OF SOFTWARE RAISES SEVERAL ISSUES:

TECHNICAL, ECONOMIC/LEGAL, AND SOCIAL/POLITICAL

' SIMPLY WRITIN6 PROGRAMS 11 THE ADA* LANGUAGE DOES NOT

GUARANTEE IEISA8 LITY. (WE NAVE PROOF.)

- ADA IS A TRADEMARK OF THE U.S. DEPT. OF DEFENSE (AJPO).

:%'..

e92

• .. , . ,... .-.-.. ,. %'.-,,' .°..- ." , ,,.. -..... . . .- -. , ,-.. ..-. °.. -..... *. .. 5*-. 5* .: .

a

• -.
~~KEY TFCHNICAL IS11U -S

-LACK OF UNIVERSA STANDARDS FOR COMPONENT COMPOSITION, ":-

LEVEL OF lIOENTATION, CODING TECHNIQUES, TESTING,...

- FIRST ONE RILT BECOMES DE FACTO STANDARD, OFTEN WITHOUT

ADEQUATE FIOR REVIEW.

- IT IS DIFFICULT TO DEBUG, TUNE AND SHRINK PROGRAMS WITH

MANY EXISTING *RLACK BOXES-

" (. - LACK OF CATALOGING STANDARDS.

- CLOSENESS OF FIT AMONG COMPONENTS, BETWEEN EXISTING

COMPONENTS AND NEW APPLICATIONS.

- GREATER IMPACT OF ERRORS.

- MECHANICS OF PROVIDING UPDATES TO OFF-LINE USERS.

' IFTMEMCS

93

'x~.-.§-..

Ie

KEY" FONDMI£/tEGAL TISUF-

- HIGHER INITIAL DEVELOPMENT COSTS AND LONGER SCHEDULES.

- WARRANTY, LIABILITY AND ACCOUUTASILITY ISSUES.

- ABILITY TO PROPERLY CHARGE FOR PROPRIETARY SOFTWARE.

- AVAILABILITY OF TRAINING AND SUPPORT. 9"

- COST-PLUS" CONTRACTS DISCOURAGE REUSE, BUT FIXED PRICE
CONTRACTS CAN MAKE CATALOG SEARCH TIME RISKY.

-CONTRIUTED SOFTWARE MAKES CaMPANY INVESTMENTS AVAILABLE
TO COMPETITORS. -.

-. 9%

9. .

.. 5

• o'

.9. * *~~'%. .*

KFY SnlC1AL/PnLt1TIAL IS=I

SN1H" SYNDROME3 REUSE IS LESS ENJOYABLE3 LOSS OF PRESTIGE

BY INTERNAL OEXPERTS&.

- EXCESSIVE' DOCUMENTATION NEEDED.

-CONTROL OF CHANGES - CHOICE, PRIORITY, TIMING, .

-ADMIINISTRATIVE IMPEDIMENTS TO OBTAINING OR MODIFYING*

EXISTING SnFTWARE.-

-REDUCED MANAGEMENT CONTROL OF RISKS.

95

p-

INTFROFTRICSI S"TAKING A CAtIM APROAC-"

- SEVEN PHASE PLAN FOR ADA PACKAGE REOSE

I INITIAL REQUIREMENTS MIALYSIS

2. INITIAL CATALOG - ENTRIES, FOmRAT, SEARCi

3. AUTOMATED CONFIGURATION MANAGEMENT INTERFACE

4. STANDARDS ENFORCEMENT

S. EXPANSION OF USER COMMUNITY

6. AUTOMATED CATALOG AND LIBRARY INTERACTION

7. MULTI-SITE AND MULTI-COMPANY EXTENSIONS

- USABLE PARTIAL RESULTS AT THE END OF EACH PHASE

- REASSESS AFTER EACH PHASE

- INCLUDE 'BULLETIN BOARD' FOR ELECTRONIC USERS GROUP

96
. -

2 .SOTAEPCK6 LSIICTO CEESADSAC

TECHNIQUES.

3. WARRANTEE AND LIABILITY FOR GFE REUSE LIBRARIES.

4. TECHNIQUES 10 FACILITATE COMPLETE, CURRENT AND

3 ACCURATE DOCUMYENTAT ION FOR CATALOG ENTRY DATA.

5. IMPACT OF ALTERIIATE CONTRACT STRUCTURES ON

SOFTWARE REUSE ISSUES.

97

REUSABLE COMPONENT DEFINITION
(A TUTORIAL)

Rodney M. Bond
General Dynamics/Data Systems Division

".Man is a tool-using animal.... Without tools he is nothing, with tools he is air (Carlyle 1834).

In this paper several paradigms are discussed in the context of the software product lifecycle. The
intent is to survey various methodologies of software development and their associated tools, and to
pose the question of what components support reusability. To identify reusable components, the L
discussion was written, and then scanned for potential reusable products, which were highlighted by
underlining. Finally, a summary section was written. The methodologies to be dis-issed are the
classic software engineering lifecycle (alternately - the waterfall method). ;ymbolic programming as
practiced by the artificial intelligence community, executable requirements specifications which are
formalized abstractions of current language systems, and a knowledge based approach.

. 6

Figure 1 is a generic instantiation of the large system can be hundreds of pages long and
classic software engineering lifecycle. The output be assembled from multiple diverse organiza-
of each phase acts as the input for the following tions. Many times this will lead to contradictions
phase. The first activity is to identify a system or 4missions in the requirements specification for
and its needs that perform some functional the'system. If inputs are expressed in the formal
requirement. There are no tools currently avail- language of a requirements specification tool, less
able to help specifically with this task; however, ambiguity is likely in the interpretation of the
some tools under development do address sup- descriptions, and the system can be automatically
port of this effort. These tools typically are called analyzed as well as automatically documented. '"-
rapid prototyping tools and are used to perform The design phase specifies "how" the
feasibility analysis of required system concepts requirements are to be accomplished. Through
and designs. This might be something as corn- tne process of "abstraction" design decisions are
plex as asynchronous communication between identified without detailing the specific imple-
programmed tasks or as simple as the layout of mentation choices. The primary tools to support
data on a CRT screen. Other tools supporting this phase are structurizers and pseudocode.
this activity help with the analysis of the effort Structurizers are tools which help the user specify
required for implementation. Cost estimating the control strategy of the program. Through
systems provide support through parametric one of several methods the modules of the sys-
modelling, or through analogy with similar efforts tern are described as processes, data objects, or
in size and complexity. Project management interfaces: and a structurizer will document and
tools help identify and allocate required resources analyze the design specification. Program
and range in complexity from simple chart gen- description languages (PDL's) are used to imple-
erators to integrated spreadsheet/database sys- ment pseudocode. Pseudocode provides a
tems such as are currently being marketed on language which is between the free form, ambi-
personal computers. guous English language and the structured. for-

The first software development phase is malized programming language. A PDL tool also
used to formalize the requirements of the pro- will implement, for a specific project, a formal
posed computer program. Several tools have pseudocode syntax which will have the same
been implemented to support this phase. These benefits as the formal requirements language:
requirements tools provide a formal system of enchanced understanding among users,
specification which can be analyzed for con- automated analysis of decisions (usually of a lim-
sistency and completeness. A specification for a ited nature), and automated documentation.

99

* The implementation phase specifies the are complex and sometimes impossible.
"with" decisions of the design phase. Each design
decision is implemented "with" the best available 'Give us the tools, and we will finish the job*
constructs in the programming language. A (Churchill 1941).
multi-way branch may be implemented as a
CASE construct or as a series of IF-THEN-ELSE The software product life cycle presented in
constructs or any of a number of other ways, pri- Figure 2 has been in existence almost as long as
marily dependent upon the definition of the the classic life cycle.
language being used, and the available extensions LISP was invented to solve the symbolic
to the language which might be implemented on
a particular host computer. Tools to support manipulation problems that FORTRAN did not
these types of choices are not available except as seem to be able to handle. The attempt to instill
systems which check for compliance with stan- "intelligence" into computers was approached by
dardization. Even though most of the tools attempting to model the human thinking
developed in support of the development of processes, which did not appear to work in

software have been in the implementation phase, numerics but instead symbolics. Because LISP
they have primarily been built to increase the was interpreted rather than compiled, there was
quantitive productivity of the programmer, not to also a tendency towards interactive programming "
support his decision processes. These tools are versus batch programming. Do develop a system.
various compilers, language constructs, smart in LISP, the total system needs to not need to be
editors. code libraries, optimizers, and many oth- identified prior to addressing design. code and
ers. The Ada?TMO programming support test. If a specific requirement can be identified,
environment is the first real attempt to provide then a function is developed to satisfy the "func-
the programmer with a set of implementation tional validity" of the requirement. This is thentools which will support qualitative as well as followed by a similar effort for the next
qtooshicwill sroduppority uaitvemes wellas identifiable requirement until the total system has

been implemented as a set of functions. System
The test phase as described here represents integration and testing is performed in incre-

the unit test of each code module. the test of ments and a final validity check accomplished.
module integration, and the system test. There Maintenance then becomes a task of modifying
are multiple tools to help with the test process, an existing function, or in the case of an error of
but by nature are tied closely to the implementa- omission in the requirements, simply the genera-
uoi language. Examples of these tools are the tion of another function. Since LISP has been in
Fortran Automated Verification System, the use primarily in the university research environ-
Cobol Automated Verification System, and the ment, tools to support the symbolic programming
Fortran -77 Analyzer. These tools perform test- lifecycle are not extensive. The decomposition of
ing coverage to determine if all of the code has the requirements does not lend itself to analysis,

.;n exercised by the test set developed, static nor does the incremental design of functions pro-
analysis to generate statistics about the imple- vide for design analysis. Coding is supported
mentation details such as numnber of branches through syntax editors which generally are not
and number of variables, and dynamic analysis to considered very powerful, but necessary, and
evaluate performance characteristics, testing is supported through run-time symbolic

The final phase, maintenance, is a recursion debuggers. Current application oriented tools are
through the previous phases to correct emerging with greatly enhanced features to sup-
deficiencies. The phase to which the recursion port design, coding and test. However, these are

. returns is dependent on the nature of the tools which define a new programming lifecycle
deficiencv. An error in the specification of the approach embodying concepts such as object-
system requirements will require a total recursion oriented programming, top-down decomposition,

* of the lifecycle for some segment of the system. code libraries, and others- with LISP as the
The most important tools for this phase are docu- underlying language of implementation.
mentation control systems. These tools include a
database in which all development documenta- 'The tools to him that can handle them"
tion, source files, and object files reside. and a (Napoleon 1817).
control mechanism which can regenerate any his- Not everyone wants the flexibility of the -'
torical version of the database. Without this previously described programming lifecycles.
capability, modifications to the generated system

100

.. " .. . *..' " ' . .

Ideally once the requirements for the system natural language interfaces, or specialized pattern
have been established, the rest of the process recognition systems. When a system is built, its
could be automated. This would mean that, unique features are incorporated (archetyped)
given that the automation methodology was into the DARTS database as new semantic units
correct, there would be no errors except for those for future use. Many versions of the same sys-
described in the requirements or caused by tem with small variations can easily be produced
operator error. The system would only be with this method. The primary thrust of the
modified when there was an identified require- knowledge based approach is to give the user a
ment error or a need for an update in require- good set of primitive yet flexible tools with which
ments. No documentation, design decisions, pro- to implement a new system.
gramming, or incremental testing need ever
occur beyond the requirements specification "Every tool carries with it the spirit by which it
phase. Figure 3 represents the tools which was created" (Heisenberg 1958).
attempt to implement this executable require-
ments specification lifecycle. These tools require SUMMARY: the following can be identified as
the use of a formal requirements specification
language which can be analyzed for consistency REUSABLE COMPONENTS
and completeness. Once accepted the LIFECYCLES
specification is then used to automatically gen-
erate source code in one of multiple languages DEVELOPED SYSTEMS
that can be compiled and executed. System per- SPECIFICATIONS

formance tuning is limited with this approach, REQUIREMENTS
but even when this necessary it might be accom- REQIRN T
plished through manual modification of the DESIGNS
source code. Even when this is not possible, the CONCEPTS
execution of the requirements prior to being used CONTROL STRATEGIES
in the classic lifecycle would provide insight into MODULES
requirements errors which would be extremely PSEUDOCODE
expensive to correct in later phases. DOCUMENTATION

SOURCE CODE
"Intelligence...is the faculty of making artificial EXECUTABLE REQUIREMENTS
objects, especially tools to make tools" (Bergson

- 1907). TOOLS
STRUCTURIZERS

The Development Arts for Real Time Sys- PROJECT MANAGERS
tems (DARTS?TMO) lifecycle presented in Fig- PDL'S

ure 4 is one of several called "knowledge-based" TESTERS
approaches, a subfield of artificial intelligence. DATA BASES
The intent is to use knowledge of previously MODELS
developed systems and knowledge of the targeted
application to generate a new system. In this and HISTORICAL DATA
other similar systems, which were alluded to in DESIGN DECISIONS
the symbolic programming discussion, tools exist RESOURCE ALLOCATIONS
as primitive functions to be used to build other COST ESTIMATES
tools, which eventually bootstrap the desired sys- PERFORMANCE CHARACTERISTICS
tem. A unique feature of the DARTS lifecycle is DEVELOPMENTAL VERSIONS
the use of previously developed systems. decom-
posed into semantic units, to baseline the new PROJECT RESOURCES
system. As much code as can be identified as COMPUTERS
useful by its semantic description will be reused COMPILERS
in producing the new system. The AXE feature PROGRAMMERS

" of the DARTS technology is a powerful program- PROGRAMMING ENVIRONMENT
ming language which is simply a set of tools to

-- help build other tools (possibly as functions)
such as graphics interfaces, domain-specific ABSTRACTION

101

. ... - - " . . how-."

.,

TOP DOWN DECOMPOSITION total system implementation, unless redundancy
LIBRARIES is applicable or the system is easily modifiable.

In either case, the current state of computing .. .

This exercise demonstrates the potential for requires one other resource to be reused, and
reuse of almost all products, processes, concepts that is the person with the knowledge which gets
and other resources. The keys to reusing these the resource reused. The process of looking for
resources would be knowledge of their existance. reusable resources versus starting from scratch is
the determination of their applicability to the not a common practice, but could become one
problem domain, and an ability and willingness to with the proper incentives applied. The earlier a
use the resource. The tools are obviously the system component is developed in the lifecycle,
most reusable by design, however may not be the more readily it can be reused. The later, the
reused due to one or more of the key factors higher the incentive for reuse. Those products
cited. The least reusable resource is probably a "designed" for reuse generally are reused.

p

'TMOAda is at registered trademark of the U.S.
Gov'ernment 'Ada Joint Program Office) 'TMODARTS is at

* :raidemark ol General Dynamics Corporation

A-UTHOR Rodney M. Bond. General Dynamics. Data
SYstems Division. 1745 Jefferson Dav.is Highway. Suite 1000.
Arlington, VA22202 H -301-731-0213 B - -,03-553-1320

102

I, f

.7-

-o en e ,-da .m Prora O.....................................

-. ,' *.,.. .I.'€ .,

"%* "RESUME

RODNEY BOND

Chief, Software Technologies

KEY EXPERIENCE
Program Management, 2 years
Project Management, 2 years
Project Support. 1.5 years

Mr. Bond is responsible for DSD research activities in Washington, DC. The research is
primarily oriented around artificial intelligence (A) and the Ada programming language. Mr.
Bond has been responsible for direction and administration of software technology programs at .
two General Dynamics engineering divisions. Primary areas of concern have been modern pro-
gramming environments, Al. military standards, advanced computer languages, computer archi-
tectures and software cost estimating.

Prior to assuming a management role, Mr. Bond was the lead project engineer for a
research effort to define a modern progreamming environment to meet the needs of the "
Defence Mapping Agency (DMA) through 1990. This effort included comprehensive research
into the policies, procedures, plans, and daily operations of the DMA as well as into the trech-
nologies requiring support. Mr. Bond also participated in research efforts to define new tools to
support distributed processing systems, and to provide a modern programming environment for
the Air Force avionics laboratories. Other research included the evaluation of productivity tools
to support software project development in general with specific interest in compiler develop-
ment.

In addition to his management role, Mr. Bond also serves as an internal consultant to
General Dynamics engineering divisions in support of their software development activities.

Mr. Bond is a member of ACM, IEEE Computer Society, and AAAI.

EDUCATION -'

500+ hours of technical courses/seminars 1980-1984. ,'%" .

M.S. - Computer Science, University of Texas at Arlington 1980

B.S. - Aerospace Engineering, Mississippi State University 1973

SECURITY CLEARANCE

Secret

..- : .- i."'-"

- ." . .2

103 1.

7.5.

"T? HOIV- - bIa

SOFTWRELEGICERN LTEYLE MODLE

SJYSTEM FLUNCTIONIAL_____
NEEDS MAINTEN CE-

ERROR FEEDBACK LOOP

FIGURE I

SKCQUEETIN SYMBOLIC PROGRAMMING LIFECYCLE

INTER ACTI~E INTERACTh' R ERACTNE

DESiil 3N DESEN

UNI UNTIT TESTJ uNFEST

REQUIREMNT * RqEMENT'N E REqU O1N+ I.

FIGURE 2

104

REWIREMNTS
SPEICATION

CONSIST ANCY&

EXECLITAOL CEK

SPECIFICATION DESIGN cCoE TES

ayT.

FIGURE 3

LIFECYCLE NEEDS

PRODUCT
VERSIN 21

PRODUCT
YERSIN WN

FIGURE 4

105

-. ~ ~~~~~W- T-.31 I. UP F.-. ~- P -7 -- -,- 7-- 7.=-----.

.° .

POSITION PAPER
AUTOMATED PARTS COMPOSITION

JANUARY 28, 1985

FORD AEROSPACE & COMMUNICATION CORPORATION K
AERONUTRONIC DIVISION

R.M. Bieniak
L.M. Griffin
L.R. Tripp

DIGITAL SYSTEMS DEPARTMENT

Introduction Major Issues of Reusable Parts Composi-
tion

This paper presents a summary of
issues, ideas and experiences relating to the The identification of the major issues of
area of automated parts composition based on reusable parts composition will serve to help-.".
hardware and software experience from focus our attention so that no major issues
members of the Digital Systems Department are overlooked in our suggested approaches.
of Ford Aerospace and Communications Cor- Tre areomany issues ted wihres-
poration, Aeronutronic Division. Newport There are many issues associated with reus-

Beach. able software components all of which have
to be addressed in a working system. This

The methods used in the development section will identify only the issues of reus-
of automated hardware design systems may able parts composition.
have applicability in the creation of similar
tools for developing large software systems Interface Between Components
from reusable software components.
Although several universities are currently ..-
sponsoring research projects in the area of The interface between components
utmmust have several properties which will sim-

plify both the design of new components andreadily available systems exist for the con- the use of existing components in larger pro-struction of large software systems. grams. It is necessary to identify the proper-

The value of an automated software ties of the interface since it will strongly
design system is especially evident when one influence the design and function of the
considers the base of reusable software com- entire automated part composition system.
ponents that will evolve as a consequence of Tdrecet Dparmentof efese sandrdsThe interface should be as flexible as .
recent Department of Defense standards psil oa oalwmn opnnsirequrin th us ofAdaas hih oder possible so as to allow many components in '
requiring the use of Ada as a high order the library to be connected together. At the

same time, the interface should prevent the
This paper will cover the following: connection of components that are clearly

0 Major issues of reusable parts composition mismatched in both number and type of
parameters being.passed.

o Suggested approaches A weak interface that does not do any

syntactic or semantic checking of the incom-
o Ada experience at Ford Aerospace ing data gives the user the most flexibility

when interconnecting components.

107

•.°

Flexibility is important since it permits and component since no new code would have to
encourages the interconnection of com- be added to the library. The second reason
ponents without regard to whether the for creating a new component is that no com- -.- :'
correct numbers and types of parameters a ponent or group have to be written and 4.
being passed. The Unix system of reusable verified. Inserting new components into a
components is a very successful system based global library would have to go through some
on a weak interface between components. sort of review process. This process is neces-
Only uniform character-stream data is passed sary to limit the library components to those
between components. The one outstanding components that are generally applicable to
problem with this type of interface is that it the problem domain of the library.
allows the connection of components that Loading, linking, and invoking co-
produce no meaningful results. It places the po ainth lin i an i pon t
burden of semantic checking on the user. ponents in the library is also an important

issue. Ideally, loading and linking should be
Strong interfaces shift the burden of done on-the-fly to provide immediate feed-

semantic checking from the user to the com- back as each component is added to the pro-
puter. This type of interface increases the gram being constructed. This dynamic load-
change of connecting components that will ing and linking also provides a means for
produce meaningful results. Strongly typed automatically linking in components that are
languages like Ada enforce strong interfaces, invoked by the component being added.

Invoking functions in a data flow type of pro-
A uniform and unambiguous interface gram made of components is complicated by

that incorporates some of the properties of the fact that functions are often invoked by
both weak and strong interfaces needs to be name. Automated techniques that modify
developed. Once developed, a specification component code to invoke the following
should be set forth early so that programmers component may have to be developed unless
can design new components for addition to a an alternative to function invocation by name
component library with the specification in similar to Unix pipes is used. This affects the
mind. Also, once these specified, there will strengths and weaknesses of the component
be no question about which components can interfaces.be connected.

The final issue related to component
Also at issue is the hidden interface libraries deals with the kind of information

between components that access common that is needed to aid the programmer in
data structures. This pathological connection building a composite program. For large
between components needs to be controlled libraries of components to which new corn- -
since it can cause anomalous behavior in ponents are added on a regular basis, some
tested and verified components. Since corn- automated means to determine which com-
mon data structures are an efficient means of ponents may be useful in performing a partic-
passing large data structures between corn- ular function would be helpful. With such a
ponents, they should not be eliminated, only system, the user could be spared the task of
controlled. reading and memorizing the function of each

component in the library.
Component Library

There are several issues related to the User Interface
component library that are of particular con- C eno t p
ern to automated part composon. OneConsiderable attention has to be paid toissue is how the components are to be the issue of the user interface. The easier a

created ard inserted into the library. Creating system is to use, the more often it will be
new components may be needed for at least used. The user interface should be highly "
two reasons. The first reason is that several interactive providing feedback to the user
imailer components could be connected along each step of the composite program
together into ai new .omponent of higher construction. Interfaces that provide both

complexity In this case, automated tools graphical and textual information similar to
4 could simplifv the creation of the new those used for computer aided design of elec-cod stronic circuits should be explored. Some

108

%.

.. . • • ' - • . "" .'.% .. ,,.*.' ..'- '. . . " ''.'. .; ' _..- :- ":, ,__, ,.,:.-L. '

simple programming systems that are pri- The traditional means of software reuse
marily icon driven have been developed, has been to generate general purpose

.. These systems show the usefulness of graph- modules which may be used in various sys-
ics in a programming environment. tems. These were typically done in high

order languages and some assembly language

Testing and Debugging of Components and modules. The system designer could use
these modules and save time implementingComposite Prograis similar support facilities. This traditional

In any programming environment, tools mechanism for software reuse has been
for testing and debugging modules and pro- enhanced with the advent of the Ada
grams are very important. This is especially language and the Package program unit.
true for an automated part composition sys- During the previous year reusable Ada Pack-
tem since the user has less knowledge and ages were generated as a baseline for reusable
control of the quality of the code in the com- Ada software.
ponents. A means for testing individual A significant expense in software '"omponentsA siimilcar expns inrc sodftwares ,..'
components similar to source code debuggers development takes place in the design phase.
found on the VMS and Unix operating sys- To recapture the effort the engineer spent
tems is necessary. This type of debugger designing the uiesy e e would
provides the control to closely inspect the designing the unique system software would
function of components at the source code save many engineering hours. During the
level. Given that the components have been past several years, Ford Aerospace has been

verified to some level of confidence, the user developing software for our specialized, real-
must also be provided with tools that allow time image processing hardware. In the
the inspection of data as it is being passed components were found to be common in
from one component to the next. Once a image processing applications. To minimize
large library of components has been esta- m o a ni
blished. this will be the primary means of costs of designing software, these common
debugging the composite program since few pieces were designed to be reusable diagnos-
new components will have to be written, tic and tracker frameworks.

The diagnostics generated for our(i Suggested Approaches hardware had many common pieces. These
common pieces were isolated from the diag-

The rising costs of software develop- nostic specific pieces. The common pieces
ment has stimulated interest in the concept were linked together to form a reusable diag-
of reusable software components. The inclu- nostic framework. This framework consists
sion of these reusable components into a sys- of control parameter, error tables, hardware
tem design can reduce design and implemen- configuration tables, graphics output,
tation costs. The four areas to be discussed verification mechanisms. etc. Upon comple-
under approach to reusable components tion of the diagnostic framework, the diag-
include: nostic dependent section could be inserted

into the framework.
o Experience with Reusability

The tracker applications proposed for
o Manual Approaches our real-time processor possessed the same

characteristics as the diagnostics. They had
o Automated Approaches many common pieces and some application

dependent pieces. The common pieces were
o Proposed Automated System Scena:.o grouped together to form a reusable tracker

framework. This framework consists of loop
control mechanisms, timing framework. algo-

Experience with Reusability rithm tailoring functions, memory manager.
Ford Aerospace's experience with reu- track file data base, etc. With this general-

sability during the last few years has included ized framework, new tracking algorithms
some traditional and innovative ways to reuse could be inserted into the framework. As an
software design and coding efforts. ongoing research project, this framework is 9-

109
"'::'."- .'" .

- -.'.- .- '* "- ' -'t. = - - . .. -" -. .2. - -. . . ,__________ ___________ ________.aL

being enhanced with better interfaces, easier the components by the problem domain with

algorithm insertion, and provide reusable which they interact. An automated search
frameworks for new application code. and retrieval mechanism will allow quick and

easy access of the reusable components. f
-Manual Approaches The next step is to automate the crea-

tion of new components, reusable or not.
inuthe ng stwae will ecoera arssu e This automation will provide a similar capa- "

bility bility to the software engineer as a Computer
in the software community. As a contractor Aided Engineering (CAE) system provides towith the DoD, our emphasis will revolve J.
with the ndo or e sbiy•T evolve a design engineer. There will be basic, low-aroundlevel building blocks to create new con-
construct will help generate components pone n Upo to ofea new com-apwhich can be used for system generationcom-

The packages will consist of functions which ponent. it can be entered into the reusable
perform on specific objects, for example. component library. Systems can be created

operators or trigonometric functions. In using this Computer Aided Programming
order to make them as general purpose as (CAP) system by linking together com-
possible, Ada generics will be used, so the ponents to solve the system problem, The

CAP system will validate interfaces and ver- I,-_type of values used by a function is more
flexible. After generating these reusable ify that all the components mesh correctly

together. For real-time, mission critical sys-components. they should be grouped by tenhacersisbotahcmpet-'

problem domain and cataloged for easy user temsdcharatristic abach c omponen
access.could be stored in the CAP database, allow-

ing automated size and speed analysis for the
In the early design phases of a new sys- proposed solution. The software engineer,

tern the reusability issue needs to be from his workstation, could evaluate various
addressed for two reasons: (1) there may be system configurations until the desired space
existing software components which could be and performance is achieved.
used to solve the problem, and (2) as a pro-
duct of our design, new reusable packages Proposed Automated System Scenario
may be generated which will benefit future C
products. The new reusable components The development of libraries of reus-
should isolate machine dependencies which able software components is a means for tak-
limit their portability. Also, all the major ing advantage of automated techniques for
issues of reusable components should be software development. The smaller the
addressed to extract maximum benefit of the amount of new code that has to be
reuse effort. developed, the greater the productivity gains

that can be realized through automated tech-
As systems designers use the reuse phi- niques. This section outlines our approach

losophy in their design practice, a large selec- for an automated system for developing con-
tion of reusable components will be available posite programs from software components
to future projects. These components will which can be thought of as a prototype for
only be beneficial to designers if they are future CAP systems.
made aware of what is currently available.
This awareness can be implemented manually Our approach is based on two central
through a company wide component catalog concepts: (1) an interactive graphics environ-
which might be separated by problem ment similar to that used for Computer
domain. Aided Design (CAD) of electronic circuits.

and (2) automated tools that support the
Automated Approaches checking and building of the program under

construction.
The manual approach initiates the con-

cept of the reusability issue. The first step in The first concept is based on an attempt
automation consists of creating a database of to duplicate the productivity gains realized
reusable components and their associated with CAD of electronic circuits in the
documentation. This database should group development of composite programs. in such

110

...'... •."'
,,-~~~~.........:.:...........'................ - _... .. ._..,._ _,-....................._-_

* . -~. -- - - - - --
,

d'.- .. "'' v.- l ,lVK

a system, a unique graphic symbol or icon is library units from a set of basic or elementary
used to represent each component in the components. This might consist of basic Ada r
library. The shape of the icon can be used as language constructs to form a building
a visual cue by which the user can determine mechanism. Upon completion of the com-
what component icons can be connected ponent, it may be entered into the com-
together. This type of icon driven program- ponent database along with its corresponding
ming system requires a fairly sophisticated statistical data. This data might include
graphics editor. number of source lines created and execution

speed. To make the task more manageable, a
The graphics editor allows the user to single source language will be selected, Ada.

fully control the interconnection of icons in In the system mode, components may be
an interactive environment. This means that linked together and if necessary, discrete
each step of building a graphic diagram of a basic components may be used in the inter-
composite program from component icons is connection. The component library may
done using the graphic editor. The user include common filters, transforms, etc.,
should be able to recall icons from the com- commonly used in image processing.
ponent library, place them on the screen, and
connect them with data paths. Removing The user interface will be very similar L
icons and data paths should be just as easy. to a CAE system, it will have graphics which
As evidenced by the current CAD tools for represent program units in which the user
electronic circuit design, graphics editors can interfaces to through a mouse or keypad.
provide a user-friendly high information The component or system being built will be
channel between user and computer. This displayed on the graphics monitor for view-
can translate to imprved programmer pro- ing. Upon completion of a component or
ductivity as long as the programs one is try- system build, the CAP system will output the
ing to graphically compose can indeed be graphic representation of the system, perform
represented in such a form. It is therefore interface verification, source code output,
necessary to initially restrict the domain of size and speed information, and source code
the icon driven system to programs with sim- documentation.

2 pie control and single-stream flow of data.
While this restriction eliminates multi-tasking The other concept of using automated
and interrupt driven programs, it does pro- tools to support the checking and building of
vide for a wide range of programs that can be the program under construction is necessary .

broken down into modules that perform to provide for those tools that are not directly
specific data transformations. One problem related to the graphic composition of the pro-
domain that falls neatly into this category is gram. Some tools that fall into this category
image processing. Because of our experience would be interface checking tools, testing and
in image processing, our initial reusable debugging tools, and component
software component library will be restricted identification and location tools.
to the image processing domain. Interface checking tools would verify

Restricting the component library to a that the connection between components is
specific domain has two major advantages, syntactically and semantically correct. These
First, the number of components in the tools are necessary to catch errors that are
library will be easier to manage. Second. it typically caught during the compilation and
will be easier to develop reusable components loading phases in a regular programming
that cover most of the anticipated processing environment.

needs.
needs. Testing and debugging tools will aid the

Another way of implementing the CAP programmer in catching errors that can only
system would be to host it on a popular per- be found during the execution of the pro- 1-
sonal computer with a hard disk to store the gram. These tools should have features simi-
necessary database. There will be two crea- !ar to debuggers 'ound in the VAX/VMS or
tion levels on the CAP system. The com- Unix operating systems. The more graphi-
ponent and system. In the component mode, callv oriented these tools are, the easier they
the user will be able to create reusable or will be to learn and use. 7

.) -Ill

" !]

.-

Because of the abstract nature of Square root, Cube root, Logarith,
software components, some automated Logarithm 10
method of identifying existing components
that may be used in the program under con- Generic Transformations Package
struction is needed. This technique may cut Includes Rectangular To Spherical
down on the creation of components that are Spherical To Rectangle
only slightly different from existing com- Coordinate Transformation
ponents or groups of components. A simple
automated component identification method Table Lookup Math Library
could be based on keyword matching. Using Includes Sin, Cos, Asin, Acos
such a method, the programmer would enter
some keywords that describe the program or
part of the program under construction. The The Research Project is also producing
automated system would then search for a guidelines document for the Usage of Ada
matching keywords in the descriptions of the in Embedded Computer Systems. These
existing library components, and display the guidelines can then be used by the systems
names of the matched components. designer to utilize Ada constructs and pack-

ages to produce an optimal Ada system.

ADA Capabilities Therefore, it is the start of our knowledge
base for producing Ada systems from reus-
able components.

Ford Aerospace and Communications
Corporation, Newport Beach has closely
tracked Ada development since 1980. Ada ADA Contract

j research projects are underway as well as an The FLIR Mission Payload Subsystem
Ada contract. Ada training began in 1982 (FMPS) contract was awarded in June of
with courses after work. Ford has also played 1983. It requires Ada for design and imple-
an active role in Ada Users groups. A mentation. Ada is to be used in an embed-
member of our staff is the national AdaJUG

Eductio Comitte cairerso. Frd lso ded Motorola 68000. The FMPS contract isEducation Committee chairperson. Ford also currently in the design phase. ,"
has a corporate Software Engineering Steer- c l e n
ing Committee (SESC). One of the tasks of
the SESC is the sharing of Ada knowledge ADA Training
across the corporation. In addition, the SESC Ioh
has set up a reusable software library. The language is properly utilized and to aid in
following sections summarize Ada capabili- mngu r reerch oeives, od
ties. meeting our research objectives, Ford

Aerospace has an Ada training plan in effect
for the Aeronutronic Division which has

ADA Research Project resulted in over sixty engineers taking Ada
courses. The training plan identifies Ada for

The Ada Research Project has been Managers, Introduction to Ada, an Ada
concentrating on the usage of Adia for design course, and Ada for Real-Time Pro-
Embedded Computer Systems. Part of the grammers. Courses have been given during
project has produced reusable Ada packages. the day as well as in-plant University of Cali-
In 1985 an existing system in Ada will be fornia at Irvine (UCI) extension Ada courses
redesigned and produce reusable packages after hours.
identified from the redesign.

The Ada packages produced last year were: ADA Facilities

Fixed Point Math Library For Aeronutronic has an Ada Software
Includes all Cody Waite algorithms Development Center for the research projects

and contract work. This consists of a DataGeneric Fixed Point Math Library General MVIOOOO computer with 12 remote
Includes Sin, Cosine. Tangent. Arc terminals, a nine track tape drive, a 940
tangent. Arc sine. Arc cosine, megabyte disk, and the Ada Development

-5. 112h r.:

Environment (ADE). The ADE has a vali- NYU Ada Translator/Interpreter. It has been
dated Ada compiler targetted only to the used for Ada training. It has also been used

* *-' MV10000. Also in the Ada center is an to verify or refute results from the other Ada
Intellimac IN/7000M Motorola 68000 based compilers.cmgabter wioppy a 350 megabyte dikhes1.r Our Ford facility in Colorado Springs is ,computer with a 50 megabyte disk, a 1.6

disk, a nine track tape drive, two printers and one of the field test sites for the validated
six remote terminals. The Ada compiler DEC Ada compiler. Our Newport Beach
currently on the Intellimac is the Telesoft facility will become a spawned beta site as
Ada subset compiler under the ROS operat- soon as one of our VAX 11/780's has
ing system. The Intellimac has a phone line installed the latest version of the operating
to another lab where the Tektronix 8561 system, VMS 4.0. Many of our Ada pro-
development station is located. One of the grams will be recompiled using the DEC Ada
terminals on the Tektronix can be used in a compiler, in order to evaluate it during the
virtual terminal mode, using the phone line, field testing period.
to download Motorola S-record formatted Ford also has access to Arcturus, ancode~~or also has accessma to Arthes antoix -code from the Intellimac to the Tektronix. experimental Ada environment being built by

Ford also has three VAX 11/780's UCI, on a VAX 11/780. Arcturus contains a
available for engineering work as well as a subset Ada compiler with other Ada-specific
classified VAX. One VAX has the validated tools.

113

• - .,

RESUME ,,:

RICHARD M. BIENIAK
R&D Engineer

Education "-C-.

BS, Information and Computer Science University of California, Irvine

Supplemental Education
Master's degree in Computer Science in process. Introduction to Ada Programming Real-Time .-

Systems with Ada

Clearance

Secret

Years of Related Experience

6

Professional Experience

As a graduate student, Mr. Bieniak provided teaching assistant support to the UCI profes-
sors in the areas of software systems design and software engineering.

As a member of the Digital Systems Department of FACC, Mr. Bieniak has been respon-
sible for the design of several real-time, embedded software systems targetted for weapon sys- t---
tens applications. This work addressed the software reuse issue as it applies to unique, custom
real-time embedded computer system software.

Significant Assignments

o Principle designer of the tracker and diagnostic software frameworks e
which facilitated the recovery of software engineering time by
grouping reusable components into frameworks for specialized. 'C

real-time, computer hardware.

o Developed an Assembler/Translator which transforms serial assembly
language instructions into parallel bit slice microcode.

o Generated guidelines for using Ada with embedded computer systems,
this document also discussed software engineering practices to be
used with the Ada language.

Activities and Honors

Spoke at the UCI Computer Symposium on the issues of reusability of software as it relates to
real-time software systems.

1.

"" 114"

• -•

-'. +.-. .. -° , - %' .'+'. .. '• "- ,.o+.-j •. - .o .- o. ,-. C . =o • .-o• . - . .,. . . . •. - C °.o.. , ., "=-.

- .

?.?

RESUME

LORRAINE M. GRIFFIN
R&D Engineer

Education
BS, Mathematics Youngstown University

Supplemental Education
Taught in-plant University of California at Irvine (UCI) on the Ada Programming Language

Clearance
Secret

Years of Related Experience
~17 •"

Professional Experience

As a member of the Digital Systems Department, Ms. Griffin is currently project leader of
the Ada Technology Research project. She also supports proposal efforts where Ada is being
considered and assists in technical questions regarding Ada. She has given Ada programming
training as well as Ada Management Seminars. She has participated extensively in Ada tools
evaluations.

Prior experience includes the programming of a circuit card test station in ATLAS on the
HP1000. She has written many engineering applications programs for radar systems in FOR-
TRAN utilizing graphics. She has experience in Ada, FORTRAN. ATLAS, COBOL, and vari-
ous assembly languages on several computer systems such as: Honeywell, CDC, VAX, Intelli-
mac, and Data General.

Significant Assignments

o Ada Technology IR&D project leader

o Ada tools evaluation team member

o Taught five UCI extension courses in Ada

o Programmed circuit card test station

Professional Memberships

SIGAda. AdaJUG. AIAA TC on Computer Systems

Activities and Honors
Chairperson of AdaJUG Education Committee

... ..

- - - - - - - - - .'-.'.
• "~~~~~~~."" " ; i . ' ", " ' '""".""." .". . '" " " . . ." "

RESUME

LLOYD R. TRIPP
R&D Engineer

Education
BSEE, BSME-Duke University 1979

Supplemental Education

Graduate Certificate in Signal Processing - University of California. Santa Barbara 1981

Graduate work in Computer Science - University of California, Irvine

Clearance
Secret

Years of Related Experience

3

Professional Experience

As a member of the Digital Systems Engineering Section, Mr. Tripp is currently responsi-
ble for the development and enhancement of algorithms for the segmentation of images.

Mr. Tripp is also a responsible engineer for the insertion of VHSIC technology into digital
systems that are under development in the Advanced Development Operation.

As a member of the Software Design Section, he participated in the design, code, and
testing of tracking software and a real-time multitasking operating system for the FPAD image
processing and tracking system.

Professional Memberships

Member of the IEEE Computer Society

Publications

"Autonomous Target Detection by Change Detection in a High Clutter Environment", SPIE
April 1983.

1-.

116°

... i-
.."."-" ". ... "...".".."'......"..-"

Ford Aerospace & STARS

Communications Corporation WORKSHOP

AUTOYMTED PARTS CCINPOSITION

FROM REUSABLE SOFTWARE COCAPONENTS

RICHARD A. BIENIAK

LORRAINE A. GRIFFIN

117- .

~ '*

.-. % . -.. . ~.**'% %*** * :.* -. -

* * * . *--17..C .- .~ 'A . JA ' '.".k . *

Ford Aerospaco & STARS

Communications Corporation WORKSHOP

* AUTIMATED PARTS COAMPOSITION

MAJOR ISSUES

oAWARENESS

oCREATION

Ford Aerospace&AWRNS

Communications Corporation

ON-LINE CATALOG

0 PROBLEM DOVAIN ORIENTED

0 KEYWAORDS

o ADA BASED REUSE

o LEVELS OF INFORMATION

- SPECIFICATION

- ALGORITHIMIC

- ATTRIBUTES SASGb

L

119

' I

Ford Aerospace& AWARENESS
Communications Corporation

CATALOG EXAMPLE SCENARIO

S LIST/DOM~IN

IMAGE PROC TRIG SORT

S DOVAIN SORT

S LIST/ALL

BUBBLE SHELL QU ICK

S LIST/SPEC BUBBLE

PROCEDURE BUBBLE

(iN VECT in out VECTOR)..WA

120

Ford Aerospace RETO
Communications Corporation

AUTOMfATED PROGRAMMING SYSTEM CAPS)

0 ICON DRIVEN

o SIMILAR TO CAE SYSTEMS

0 RETRIEVAL MECHANISM

o S/W DELIVERABLES CREATED

o BUILDING BLOCK LEVELS

0 PICTORAL REPRESENTATION OF SYSTEM

Z Z

a AMIO ACDS OFDCMAN SET(MSI

0 LCWLEVE COMPNENT(LS.

0 HIH LEEL OMPOENT LSI

0 YTE VLI

* C~J1A12

Ford Aerospace STARS
Commuications Corporation WORKSHOP

2001 -

A SOFTWARE ODYSSEY

123

...

.JL.

.00

WvArC4 COAA
object COA4
Sys. Pictorial

________Perfvw~.ce 124l

Ford Aerospace &STARS

Communications Corporation WORKSHOP

1985 -

BACK TO REALITY

125

Ford Aros*a.

ISSUES

oDEFINITION

0 INTERFACES

0 CREATION AND INSERTION

0 LINKING- AND LOADING

0 INFORMATION

0 TESTING AND DEBUGGING

126

Ford Aerospace &REUSABLE

ICommunications Corporation QUOTATIONS

TO CODE IS HUIMAN. TO REUSE IS PROFITABLE.

I WHERE'S THE COM\PONENT ?

I REUSE IS A BETTER ILEA.

A GENERIC PACKAGE CATALOGED/PUBLICIZED IS

VAORTH 222 BY AN ADA GURU

127

A Discussion of Ada Experience
At General Dynamics Data

Systems Division Western Center

John J. DaGraca

General Dynamics

February 1, 1985

A bstract

This paper details certain Ada experience at General Dynamics Data Systems Division's Western
Center in San Diego, California. A general description of Ada activities at the Western Center is
followed by a project description and details of"special problems' encountered in using Ada on two
specific projects perjbrmed at the Western Center. The first details experience in using Ada in a
missile embedded system under an Air Force contract and the second describes developing resuable

*5 software tools and components for an internally funded program.

Introduction and two TeleSoft M68000 based Ada worksta-

tions are available to development personnel.

General Dynamics is committed to using We have recently become a field test site for the

Ada as the implementation language of future Digital Equipment Company (DEC) Ada corn-

military systems. and recognizes that the real piler and have installed the DANSK Ada corn-

m payoff will be when Ada is used through a project piler in one of our facilities.

life cycle ie., from system definition through General Dynamics has funded several Ada
software maintenance). Data Systems Division related Internal Research and Development
Western Center, has supported the Department (IRAD) projects in order to develop Ada exper-
of Defense standard language since Ironman and tise. These projects include the Distributed Pro-
has internally funded review teams that provided cessing System Architecture IRAD, the Ada -

inputs to Pebbleman, Stoneman, and the result- 1750A Standardization Study, the Strike Planning
ing KAPSE and MAPSE. Western Center person- Package, and the Vehicle Elect which Ada is
nel attend most Ada workshops and have being applied include embedded missile systems.
presented a paper at the Ada Test and Evaluation fire control and ballistics, weapons simulation.
Workshop in Boston expressing specific areas of limited graphics, weapons trainers, command and
concern regarding Ada's potential impact on control, and Man-Machine Interface (MMI). In
embedded systems. conjunction with our IRAD projects, we are

We are currently using and evaluating designing several Ada benchmark programs to

several Ada compilers and Ada based Program allow us to determine not only the speed and

Design Languages (PDL) as well as continuing accuracy of Ada compilers as they become avail-

our investigation of other available Ada tools to able, but also to evaluate the feasibility of using
determine those which best suit our needs. full Ada in real-time environments by using the

Several Ada compilers are currently installed on tasking functions. We are active participants in

computers located at our San Diego facility. We the Ada community in order to remain aware of
'are using a Florida State University (FSU) current and future Ada activity and to contribute

developed Ada compiler, hosted on a CDC to the exchange of Ada technology. We regularly
CYBER computer, in performance of our Tactical participate in the Ada/JOVIAL User's Group

Ada Guidance contract with the Air Force. Two (AdaJUG), and SIGADA conferences and have
versions of the New York University (NYU) attended the IEEE "Ada as a PDL Workshop".
Ada/Ed interpreter, the TeleSoft VAX compiler, the AFSC Standarization Conference and the -

AJPO Evaluation and Validation Team
Ada is a registered trademark of the U.S. Government Ada Joint Program Office

129

•A . . - -*

• °

workshops. We participated in the DoD spon- o Allocators ,
sored Software Initiative Workshop in Raleigh o Aggregates
which has evolved into the STARS program. We o Named parameters
are an active corporate sponsor of the local o Private Types -.* ,
chapter of SIGADA and co-hosted a joint meet- o Renaming
ing of the AdaJUG and AdaTEC in San Diego o Exceptions
last February. o Tasking

o Entry families ""
Experience in Using Ada in a Missile Embed- o Priorities
ded System o Attributes '.-

o Abort
The Tactical Ada Guidance (TAG) program o Address clauses

provides an opportunity to demonstrate the full o 1/0 kvb
capability of Ada as required in a tactical missile o Separate Compilation
guidance system under contract to the Air Force o Unchecked type
Armament Laboratory (AFATL) at Eglin Air conversions
Force Base. General Dynamics Data Systems
Division's Western Center has redesigned and is The use of Ada in this (MRASM) real-time
currently implementing the software in a embedded computer system provided a variety of
MRASM Cruise Missile using Ada. Originally application types including multitasking, time
implemented in JOVIAL and Zilog Assembly critical I/0 handlers and low level system applica-
Language, the MRASM Test Instrument Con- tions such as hardware memory testing. As
troller (TIC) software provided a unique case to might be expected, the development team has
implement a redesign which encouraged exten- and is continuing to encounter problems in using
sive use of Ada language features. Ada in this environment. A complete "lesson

The TIC is one of three Digital Integreting learned" report will be developed as part of the
Subsystem computers that support MRASM TAG contract. The following paragraphs address
avionics. It was selected for TAG because its three specific areas of general interest that
functions are more logic intensive than computa- become evident during the TAG project:
tional, it requires high I/O through-put and inter- o Desirable language modifications
rupt rates and requires asynchronus task. The o Needed pragmas
TIC computer provides three major functions for o Time critical interrupt processing
MRASM. A telemetry formatiing function sam- . -

pies bus data, analog channels and discrete sig- A desirable language modification would be
nals and generates a telemetry stream based on a to permit the inclusion of anonymous record .'
changable, but pre-flight specified, format. A t ypemiwithin cu anoymu record(d P

second major function provides the range safety port the concept of subrecords. At present, a

missile remote command and control (RCC) link subrecord cannot be declared in this context of

between a chase aircraft and the missile's autopi- the main record. A new type must be declared
lot. The third major function provides a continu- which has no meaning by itself. The current
ous built-in-test capability on a non interference implementation results in a proliferation of types
basis. and forces the reader to understand the record

Performance on the TAG contract has pro- from the bottom up in violation of the principles
vided software designers and developers the of top down design and top down understanding.
opportunity to utilize a number of different Ada Three areas have been identified where
compilers in addition to the Air Force thrareas ae eeienie wr
AFATL/Florida State University compiler. These d
included compilers produced by NYU. Rohm o Initialization time control
Corporation. TeleSoft, DEC and DANSK. The o Static object placement
nature of the TAG application encouraged exten- o Shared variable problem I
sive use of Ada language features including:

Ada provides initialization of objects by
o Overloading assignment statements in unit code bodies, in
o Overloadig declarations, or in package code bodies. The pro-

grammer has no explicit control over whether the

130 '3::- ::.:::

"

*l W, k,! * -K, °.. •

. compiler generates run-time instructions or a monitor tasks. Such pragma would directly con-
load-time instructions (pseudo-ops); however, nect the monitor task to the calling task by issu-

* --" there are several situations where only one ing a service call, run the monitor task in a non-
method is correct. interruptable mode and eliminate non-essential

o Objects in ROM are impossible task switching activities. -

to initialize at run-time. Another Ada problem which confronted the .-,
o Values in RAM must be initialized TAG program is that response to some interrupt

at run-time to preclude handlers would be too slow if normal Ada con-
loss due to power off conditions structs were employed. TAG provided two
prior to use. specific instances of this problem: first, when data

o EEPROM variables will be extremely can "burst in" and be lost if it is not processed in
slow to initialize at a timely manner and second, then the interrupt .run-time and should generally represents an emergency situation. Both situa-

be initialized at load-time. tions require timely response but for different
reasons. The first situation requires insuring that

A pragma enabling the programmer to the data is saved before it is destroyed by new
specify objects to be initialized at load-time is data. It can be processed later. The second
desirable. The default should be run-time situation simply requires minimal delay in pro- L
because initialized values may contain a function cessing the interrupt.
or allocator. The TAG approach to this problem is a J

Unlike JOVIAL and many PASCALs, Ada user provided, quick-reaction handler which per-
does not provide an option to specify that an forms minimal processing prior to enabling sub-
object is static, i.e.. is not placed on the stack. sequent interrupts. This handler cannot afford
The capability of specifying static is desirable the time delays associated with a normal Ada

' because the program logic may require that the "rendezuous". Instead, TAG enqueued the inter-
objects value be retained between calls to the rupt data for the run-time system to process later
program (as in the case first pass through the when interrupts are enabled. Of course, both the
program logic). At present Ada provides two handier and the Ada run-time system will have to
unsatisfactory methods of implementing a static disable interrupts while accessing this shared
variable: queue in order to assure data integrity. It should
(1) the address clause and be noted that this approach is not an Ada solu-

tion but it minimizes the time during which
(2) declaring variables in library level packages. interrupts are disabled and is necessary until

more sophisticated compilers are available.The first method is awkward because a
static requirement does not imply that a program- Developing Reusable Ada Software on an IRAD
mer should know where an object be allocated in Project

- memory. Attempting to coordinate this informa- ._.c

. tion. as with a utility program, is not practical. The Integrated Strike Planning (ISP) project
Moving a static to a library level package miti- provides an example of DSD's experience
gates the initialization problem but requires mov- attempting to develop reusable software tools and
ing the object and its required type statement out components in Ada. ISP is being developed for
of their natural scope. the Operations Research Department of General

The Ada method of sharing objects among Dynamics Convair Division. Strike planning is
tasks is to encapsulate them in a "monitor" task the process of decomposing military objectives
which provides the only access to the objects. into discreate weapon-target pairs so as to ensure
The Ada run-time system guarantees that all call- a high probability of achieving a specified level of
ers of the task will wait until the current one is damage and of aiding in the deconfliction of tacti-
through, thus providing mutual exclusivity to cal air power and cruise missiles. It begins in the
shared variables. This method is highly reliable target area with the weaponeering of individual
but requires many more tasks in the system and target/weapon pairs, then coordinates multiple
entails the overhead of going through the vehicle paths to maximize damage and minimize
scheduler and other task switching activities. A interference. General Dynamics anticipates

. proposed solution to these problems is an addi- interest in ISP from a number of potential DoD
tional pragma which assures special treatment for customers.

131

- ** ,., .. *- *.-..***-

Software development on ISP is being per- The most apparent issues are the problems
formed by software engineers who have an aver- caused by attempting a develop of tools.
age of 1-1/4 years of Ada language experience. Specifically, ISP was impacted by the lack of: .
Development Work is being accomplished using , :
the October 1983 release of the TeleSoft Ada o Symbolic debrs
compiler for VAX computer executing under the o Pretty pointers
VMS operating system. One development effort o Generic libraries
was also attempted using the DANSK Ada corn- o Data base management systems.

,. piler also operating under VMS.
An objective of the ISP software effort was

to develop reusable software systems in Ada. The ISP project demonstrated that a vali-
Candidate software elements were selected on the dated Ada compiler does not necessarily generate
premise that stand-alone software meant reusable valid Ada code; that is, the validation suite and
software. The following reusable software "sys- the LRM are two different beasts. For example,
tems" have been developed in Ada: an error was discovered in the TEXT 10 package

that reversed the order of statement terminal the -:
(1) Rosette A screen formatting package text string being disAdditionaMavalidation

designed to help a project maintain con- supragma INnt compiled sondefinition of self
sistent menus and terminal display outputs. documenting featctthfact that the stands andtype/object declarations were not .''"

(2) Statistics-Operations - A portion of the possible/ normal. atne
statistics-operations software in Q-SIM (a p /
Fortran based discrete event simulation Finally, the ISP project raised several
package developed by Convair based on the configuration management and quality control
concepts of SLAM) was recoded in Ada. issues resulting from the ability to perform
The package permits collecting relative and separate compilation of program body stubs. One
absolute time statistics, observation statis- of the questions raised was what is the relation-
tics and operations such as merging statis- ship between a file name and a procedure and a
tics and computing and outputing histo- different file name with that procedure's body
grams. stub. The potential magnitude of this issue was

demonstrated by the fact that there were over
3) SIMULADA -A discrete Monte-Carlo 200 VAX files associated with three ISP modules. L.

simulation package.

(4) Joint Munitions Effectiveness Methodolo- Summary
gies (JMEM) - The JMEM Air-to-Surface
Weaponeering Methodology calculates pro- A variety of sample problems encountered
bability of kill (Pk) against specified targets in the use of Ada on two General Dynamics pro-
using various weapon combinations. jects have been presented. It is important to note

the different nature of the two projects and the
(5) WANDA - A graphics primative package corresponding difference is the types of problemsdesigned to drive a Megatek 1650 color- reported. The earlier IRAD project raised issues

graphics display terminal, that were frequently directly attributable to the
(6) Target Evaluations Module - This module immaturity of the specific compiler employed. It

in ISP assists the strike-planning tasks of also raised serious configuration management
decomposing a mission objective into a set issues which will impact all large, full scale
of weighted targets. An interactive fuzzy- development projects. The TAG program raised
decision algorithm obtains a hierarchy of more specific technical issues directly related to
valuations from any numbers of users and real-time missile software. Some of these issues
outputs a list of cardinal target values for required solutions outside of a pure Ada context.
the selected targets. Many others, however, suggest a need for a

better way to solve specific issues demonstrating
The use of Ada to generate reusable an increasing understanding of the Ada language

software on the ISP project raised certain ADA by the user. The types of issues raised on TAG
specific issues. Several of these are discussed in further reflects the increasing maturity of the
the following paragraphs. Ada compilers available today.

132

e- r

[-~~ WWW =,¢

S-RESUME

JOHN J. DA GRACA

EDUCATION

MS, Computer Science
Brown University. Providence, RI, 1978

BSEE, Electrical Engineering
North Eastern University, Boston. MA, 1974

ASC, Math-Physics
North Eastern University, Boston MA, 1970

TECHNICAL QUALIFICATIONS AND ACCOMPLISHMENTS

Mr. Da Graca has over 15 years experience in the design and development of real-time mission
critical systems, process control systems, compiler developments (PASCAL, JOVIAL), graphics sys-
tems, man-machine interface, peacekeeper C?30 software development and software development
methodology for peacekeeper. He has taught several Ada classes and has developed a complete set of
math-library packages in Ada.

Mr. Da Graca has published several technical papers on Ada.

(1) Design and develop a real-time hardware/software system for field configuration of process con-
trol plants. The purpose was to design a small field configurable system using microprocessor
hardware, using modern control theory with as many as eight general purpose control algorithms.

(2) Design and develop software system for Fast Error correction program. The purpose was to study
the suitability of Ada in communication systems. This involves message text processing, signal ..---
processing technique and mathematic library packages.

(3) Design and develop a real-time executive for mission critical system. The purpose was to investi-
gate run-time overhead associated with Ada when using tasking mechanisms and Ada constructs
to investigate the run-time dependent features of the various Ada compilers.

(4) Design and develop a complete set of mathematic library packages to be used in real-time Ada
application environments. The purpose was to design and develop high speed calculations of math
functions such as:

- Square - Logrithmic

- Square Root - Tangent

- Sine Cotangent

- Cosine Integer Random

-Secant - Floating Random

- Cosecant Digital Filter
3rd Order Chebyshev

-Exponential

133

7'

- (5) Design and develop C?30 executive. The purpose was to study kinds of software tools required
to support a methodology during the life cycle of software development with Ada. During this
effort three methodologies were used:

- Object Oriented Design Approach

- Process Abstraction Methods

. Data Flow Diagram Techniques

(6) Design and develop cross-assemblers, cross-linkers and emulators for several high speed missile
processors.

(7) Retarget JOVIAL for missile processor.
(8) Design and develop PASCAL compiler for missile processor.
(9) Design and develop tactical missile system control algorithm.

(10) Design and develop test plan and procedure for peacekeeper C?30 software.

1.3

.. % .-. .. '.- .*..,~ -...

-~V AL~rr

RESUME

EDWARD J. ANDERSON

EDUCATION
MS, Business Administration
University of Northern Colorado, 19"77

BA. English L
North Carolina State University, 1966

TECHNICAL QUALIFICATIONS AND ACCOMPLISHMENTS

Mr. Anderson has over 17 years experience in systems requirements analysis and design for
C'*301. Communications Systems and Signal Processing applications for Navy. Army, Air Force and
NASA customers. He has experience in CAD/CAM data base management applications and is
currently serving as technical coordinator for the development of General Dynamics Corporate with
Ada training program.

(1) -urrently coordinating requirements definition to develop a corporate-wide Ada training program
for all General-Dynamics divisions. Reviewing and monitoring ciriculum development activities
of an independent Ada training consultant.

(2) Responsible for defining software design requirements to implement a distributed data base pro-
cessing system in a mini-computer environment for an Army C?301 system.

* 3) Developed requirements for implementing a corporate-wide CAD/CAM data base management
system.

(4) Project manager of Test and Evaluation for several advanced acoustic processing and communica-
tions systems employed in an ASW environment.

I5) Software designer for the Naval Modular Automated Communications System (NAVMACS) and
Naval Ocean Surveillance System (OSIS).

- '6) Software designer and developer for several Naval Tactical Data System (NTDS) applications
including target tracking algorithms, multiplex processors, missile control software, display sys-
tems and electronic warfare.

1L

135

! F

..

- ._' -6 . 7 . .- -

RESUME

JAMES SCHNELKER

EDUCATION

MS, Computer Science
University of Wisconsin. 1968

MS, Math
University of Chicago, 1966

BA, Math
University of Chicago, 1960

TECHNICAL QUALIFICATIONS AND ACCOMPLISHMENTS

Mr. Schnelker has over 15 years experience in the design and development of real-time command
and control, avionics, and process control systems. He has developed data base management systems as
well as numerous software development tools.

(1) Responsible for a project for the evaluation of the Ada programming language for real-time sys-
tems. The purpose was to establish strategies and tactics for the effective use of Ada in space-
critical, time-critical embedded systems.

12) Responsible for the design and implementation of a real- time operating system for a network of
Z8000s. This involved Inter-computer communications software, several I/O drivers, a bootstrap
loader, two multi-task scheduler and a memory manager.

(3) Responsible for the development of a context dependent language translator and interpreter for
- automatic generation of specification languages.

(4) Responsible for the design and implementation of an interactive system to define and manipulate
schematics on limited-graphics CRTs.

* (5) Responsible for the design and implementation.
(6) Designed and developed trajectory and Kalman filter programs for navigation and mission plan-

ning.

136 ..

'.5

"-" 136""

- o ' .

17-

LLU

CLLj<O>CJ

U U < a. CU

137

who

(S..

Z 4.,.

LLI

IA-

LI-

C)
ZUL

,rg

138

-~~~~~~1
f . -v a -zr !~ ~ -

LI

c CS

LU>

CL

-4r: %-,) .

LL..-

139

'I

LU Ci l

LLJQ

H-LU C
LU <l X J

>-U zi- L2uG (

T-)

,L-Ju.IuI cm I I I

ZL j
* 0.. LU 0

14 ..L a: 3 L

U-11

LU

LUJ C) LU wp L LL.

ocj Zzo LU

0 < LU O
LUQ

z z iU
%ASO .J < w

0L m LUUUQ f Z

L.J

C. UU U S

LLc J <3J

cc *U a: _cc
< ~ L) -. C' .) L, o CL_* __________________

* ~~~~ ~ ~ ~ ~ L - .aLL J -- .*%.** ... **

IAJ C/)

zz

a.-

I-142

1 77..7-7 P 77 77 "7 7 - - .

LLI -I.

>. (h Li. .

)-LU LU -

(K U.

=> U L

zuj

* 0@0

u %U

M w 4

=~ LULUD

X '4 c.

z = z zL Z. z
0 LU L d

-r z I- 1. 4

cr 0 -a

0. LL. Cc C"-I

w. 0 0)

(r. x

LLLU

zJL CC

C1LL

Z L U LL

CU-J

~~LUzz

*L aL a. a L

LLJ144

LL~*~*~

C3..........

r... %

RAPID PROTOTYPING WITH REUSABLE SOURCE CODE

Elaine Frankowski, Mark Spinrad, and Paul Stachour

Software Development Technology
Computer Sciences Center

10701 Lyndale Avenue South
Bloomington, Minnesota 55420

Abstract

Software requirements are negotiated between application area engineers who are not computer
experts, and software engineers who are not experts in the application area. Traditional
requirement document reviews do not bridge the terminology and concept gaps between the two
communities. In addition, document reviews do not exploit application experts' intuitive notions of
what a system should do, notions they can express very well once they have some hands-on
experience with a software prototype of the system being designed. Using prototypes to get the
requirements right bejbre implementation starts eliminates the schedule delays and cost overruns
caused by redevelopment to correct incomplete, erroneous, and misunderstood requirements.
Correct requirements also result in quality systems.

This paper presents an approach to constructing software prototypes from reusable software
components, composed into running prototypes with various Jbrms of software "glue," and describes
the tools needed to reuse software in prototypes.

1 BACKGROUND performance. This demonstrates vividly that
even when stated functional requirements are

Software requirements are negotiated met, real needs are not.
between application area engineers who are not
computer experts, and software engineers who The STAIRS evaluation [BLAIR] exempli-
are not experts in the application area. Tradi- fies how real needs may not be met because the
tional requirement reviews ask application area wrong requirements are stated in the first place.
experts to read documents prepared by com- The users' real needs from the STAIRS Storage
puter experts. Such reviews do not bridge the And Information Retrieval System were "the
terminology and concept gaps between the two documents relevant to a particular search." that
communities. This often means delivering is. all and only the documents pertaining to a
software that meets the negotiated requirements particular query. That need was translated into
but does not meet the user's real needs. requirements for storing "the full text of all -

documents in a collection on a computer so that
Not even computer manufacturers are every character of every word in every sentence

immune from this problem. For example, the of every document can be located by the
IBM-developed SYSOUT writer, a spooling util- machine." Experiments showed that the system
ity which met all of IBM's stated functional "retriev(ed] less than 20 percent of the docu-
requirements, was replaced by either HASP or ments relevant to a particular search." [BLAIR]
ASP on over 70% of the OS/MVT systems. argues a system that stores full text without
IBM provided SYSOUT free to its customers. index-terms is theoretically unable to meet the
HASP and ASP are both user-developed users' real needs, and, adding insult to injury,
requirements which had :o be purchased or far costlier than a manually indexed system
leased. Customers paid for HASP and ASP which meets users' needs better. A prototype
because they provided functions not available full-text retrieval system for almost any large
from SYSOUT as well as highly increased body of text would have shown that the users'

145

r

~ -'~. -..--.- - [-°"

true needs could not be met by a system which system is (nearly) complete. Because this is the
stores full text only. longest feedback loop in the entire development

process, rapid prototyping of (portions of) a sys- "-" '-

It is clear that written requirements by tern early in order to "check" requirements has
themselves do not tell the whole story, and that the potential to achieve significant cost savings
"behavioral feedback may reveal information and insure quality systems.
that is different to discover by analysis of a
static system description." [SMITH82] Proto- 3 ELICITING USERS' TRUE NEEDS
type is one method of getting behavioral feed-
back, and, using that feedback, getting the In The Mythical Man Month, Fred Brooks
requirements "right" by getting at the users' true states "Where a new system concept or new
needs. technology is used, one has to build a system to

throw away, for even the best planning is not so
2 WHAT IS QUALITY? omniscient [as] to get it right the first time."

[BROOKS] Unfortunately, economic reality
"One of the biggest sources of software makes it very hard to bid a two-system develop-

problems stems from ambiguity in the software ment effort on most contracts, or propose a
requirements specifications. A number of dif- two-system development cycle to most general
ferent groups-designers, testers, trainers, managers.
users-must interpret and operate with the
requirements independently. If their interpreta- Sometimes events allow systems to be
tions of the requirements are different, may developed more than once before they are
development and operational problems will pushed out the door. The Multics development
result." [BOEHM] project [CORBATO], because it was a long-term

research and development project, enjoyed the
To define software quality as "meets benefits of de facto whole-system prototyping.

requirements" assumes that requirements are The Multics project was fully prototyped and the
clear and unambiguous to all groups. The user hardware simulated on an existing system. The
may not be able to state requirements clearly: hardware was build only after the complete (.'

"My office procedures are too ad hoc. I need an run-time environment of the operaing system
office information system that will organize my was built., tested, performance measured, and
transactions and will allow me to made decisions rebuilt. Four years into the project, Multics
more effectively." [TAYLOR] Some require- became its own development environment. giv-
ments may be unknown to the customer: how ing its developers the change to validate
many times have we delivered systems only to whether the requirements and designs they were
find that they can't be used until another func- positing really met the needs of software
tion is added? It is clear that quality means developers. [CORBATO] reports that'.., most
meeting users' needs, not their stated require- areas of the [software] system were redesigned
ments. as much as a half a dozen times in as many

years." This de facto prototyping is certainly
Current practices for systems development one reason Multics enjoys a reputation as an L

promote quality by using a well-defined lifecycle excellent (modern) development environment.
and verifying consistency between phases, e.g.,
the implementation is checked against the Software prototyping, that is, building a
design. However, requirements cannot be partial model of critical, new, fuzzy, or other-
"checked" against a previous phase; they are for- wise questionable requirements gives software
mulated "out of the air" in response to a per- and system developers the ability to check
ceived problem. A requirements statement is whether a particu!ar set of requirements are '.
simply a "best guess" at a feasible, timely solu- intelligible and correctly express users' needs.

"* tion. To verify that this "best guess" indeed Because one builds only part of the eventual
solves the problem requires a complete system system, the cost and time spent to determine
implementation(s) and user feedback. There- the correctness of the requirement are both ."
fore uncertainties and inconsistencies in require- manageab!e and reasonable [HOOPER].
ments may not become apparent until the

1 46

%......

...
•- - - - -

,.j,

7 7 7.. 577 7 77-€' =-: ,- F. ,•7--,-- .,--=r: -, ..- 7 ,.-- , 1 7, N7-.- 7 - %- , -v ,"W-1- . - , ' -', ,r ,

p.

4 PROTOTYPING OBJECTIVES AND 4. reconfigurable test harnesses.
METHODS

These methods are not mutually exclusive;
In the field of computer science, practi- they are, in fact, mutually supportive, and may,

tioners often misunderstand each other because in general, be used in a "mix-and-match"
their interpretations of popular buzzwords fashion.
differ. "Rapid prototyping" has gained currency
as a popular buzzword largely because it is one Scope reduction isolates critical aspects of
of those phrases which means many things to the system for prototyping, to reduce the proto- %.,

many people. type complexity. This method is implicit in vir-
tually all rapid prototyping systems.

This section does not offer a single defini-
tion of rapid prototyping but categorizes rapid Software reuse requires two capabilities:
prototyping by motivation and by method, so the ability to retrieve and reuse existing
that the meaning of the term is clear in the software, and the ability to catalog developed
variety of contexts in which it is used. software for later reuse.

There are 8 (eight) objectives that various Very high-level languages allow the proto-
rapid prototyping systems seek to address: type developer to implement a system quickly

by providing powerful structuring and control
1. improved feedback to requirements tools (e.g., LISP) or by providing powerful

analysis, application-specific primitives [MCCO82].
2. selection of design alternatives,
3. one-shot applications, Reconfqgurable test harnesses provide well-
4. reimplementation for software mainte- defined interfaces for embedded software. Each

nance [SMITH], component of the system may be replaced; e.g.,
5. rapid response to changed require- a device simulation may be replaced by the

ments [TAYLOR], actual device.
6. feasibility demonstration,
7. incremental system development, and RaPIER is based on scope reduction and
8. experience acquisition. software reuse. The rest of this paper discusses

reusability in the RaPIER context.
The RaPIER system is intended to provide

improved feedback to requirements analysis.
The objective is to get the requirements correct 5 DEVELOPING RaPIER

*i before implementing the production model of
* the system. 5.1 Reusability

By rapid prototyping methods, we mean Reusing software artifacts-code, designs,
primarily the way that prototypes are developed algorithms, or basic concepts-promises to raise
rapidly (prototype building methods). There software productivity by allowing developers "to L
has been little attention given to how prototypes write fewer total symbols in the development of
are used for those prototyping objectives where a system, and ... to spend less time in the pro-
decisions are made based on "playing with" with cess of organizing those symbols [BIGGER]."

prototype. Prototype using methods are a topic There are diverse approaches to reusability. .-

of research in the RaPIER project involving [BIGGER] classifies reusable components into
human factors and feedback analysis. building blocks and patters. Building blocks

such as modules in application libraries, or
There are four major methods for proto- filters in a Unix system, are reused by compos-

type development. These are: ing them into larger artifacts that do more com-
plex tasks than the individual modules do. Pat-

1. scope reduction; terns are the underlying "domain analysis" that
2. software reuse; supports generation systems including applica- ELL
3. very high level languages; and tion generators such as NOMAD or FOCUS,

147

"" "" "" • " ~~~~~~~~~~~................. -.. _ l.l.l... .l..........s , .uA.
", ' .,.', , "- . - " . .• ..-.. " .' .- ' , . ", ".',,". . ".". ,-"- ., ,,'" - .. ' ' '. ' .. ' " - - .. ' -.- '.-..

problem oriented languages such as ATLAS, Productivity improvements through source
. and program transformation systems such as code reuse [LANERGAN, HORWITZ] demon-

*: PRL [BATES]. strate that there are functions in many applica- "- . -"

tion areas which can be reused and that it pays
Prototyping will be useful for require- to analyse and code such functions for reuse.

ments identification if it is quick relative to the Documented success with code reuse led us to
time needed for the whole development effort, choose that approach as a near term solution to
and cost effective. The same productivity bene- the need for speedy prototype construction.
fits that reusability promises in development Throw-away prototypes do not have stringent
make it a natural choice as a prototype imple- performance or architectural constraints, there-
mentation technique. fore the inefficiencies and awkward architec-

tures that may result from reusing code will not
5.2 The RaPIER Reusability Strategy make the prototypes unusable. In addition, pro-

grams constructed of reusable parts will exhibit
The RaPIER (Rapid Prototyping to Iden- low coupling (STEVENSI, promoting modifia-

tify End User Requirements) project has the bility. Finally, code reuse can be applied in the
goal of installing prototyping as a standard embedded system area faster than an approach
operating practice in the user-requirements such as program transformation [CHEATHAM]
phase of the (embedded) computer system and which is still in the research stage. This fact
(embedded) computer system software develop- improves our chances of developing RaPIER
ment lifecylces. Honeywell develops embedded itself quickly.
computer systems primarily under government r
contract, using a DoD prescribed development Having chosen the reusable source code
life cycle which mandates that requirements be approach, Ada was the natural choice of source
frozen early. Throw-away prototypes are language for several reasons:
entirely appropriate in this milieu, where the
actual system is engineered according to govern- 9 it contains features, such as packages
ment standards. and generics, that facilitate writing

reusable code. that promote low cou-
Our requirements in a throw-away proto- pling, and that support modern pro-

type are that it be a highly modifiable artifact, gramming standards;
quickly and cost effectively built. Our require- * its DoD sponsorship makes it highlyl~0ikely thatpmanyrshde makues itwigly e.'-
ment for the automated RaPIER tool is that it l.n'.
be ready for practice projects in three years. available for reuse within the next
Reusability supports quick, inexpensive a e or reus w n e
development. Reusing building blocks pro- yerorto
motes modifiability. In addition reusing build- * Honeywell divisions that develop sys-
ing blocks is a more seasoned technology than tems for the DoD using Ada will gen-

. reusing patterns. Using seasoned technology erate application specific code com-
* - makes it probable that we can develop the core ponents, providing a stock of reusable .

of a prototyping system in three years. parts for the types of prototypes -
RaPIER is intended to construct.

* type programs will be implemented in Ada. The Our approach, then, is to develop proto-
prototype will be described in a high-level proto- types primarily from Ada packages that have
type description language. That description will been written according to reusability guidelines.
be mapped into an Ada program composed of Code developed under the guidelines, or code
modules from the software base and the "glue" modified to meet the guidelines, will be easily
statements that bind them together. The fol- customizable for each specific prototype. Cus-
lowing sections present details about RaPIER's tomization will be accomplished by generic
prototype construction technique and tools. instantiation and selective replacement of bodies

and separately compiles units. .,.

5.2.1 Reusable Code Modules
There will be guidelines for the general

148

'-7 :

. *-: : :::: ::::::::::::::::::::: : : ..:::..:. :.: .:. :::> :. ,..:.: ..::. ..:.--.:..: ..>. .. .

organization of components and lower-level research areas is application generation for
rules for writing individual components. For embedded computer system prototypes; in our

"*" example, a general organizational guideline 3-5 year time frame we will most likely develop '.

might be that a function which modifies its glo- only an application generation approach.
bal environment must restore that environment
before terminating to allow other functions in Executable specification languages and
the prototype-program to behave correctly. their interpreters are used today in research and
Another general guideline might be that an advanced development [ZAVE, DAVIS,
interface should be constructed with as many BALZER]. Every component in a prototype
parameters as possible, to provide many options must have a specification, both for the proto-
for customization, and all parameters should be type builder's use and for use by the software
given default values to accommodate most base browsing facility. In the long term, those
users. specifications could be executable, and inter-

preted specifications along would be enough to
At least initially, there will not be a reus- realize some behaviors in a prototype. An exe-

able module to realize every behavior a proto- cutable specification could be incorporated into
type must exhibit. As more prototypes are a prototype under software base operator con-
developed, however, the stock of reusable trol, just as reusable source code is incor-
modules will grow. Barstow's [BARSTOW] porated.
experience in developing a rul base for transfor-
mational programming showed that "Eals succes- Whole programs are another source of
sively harder programs were attacked during the behavior not found in the software base. The
process of rule development, fewer and fewer research problem associated with entire pro-
rules needed to be added to the knowledge base. grams is how to "glue" the selected functional
And when a new domain ... was tackled, it behavior into the rest of the prototype. Some
became clear that much of the necessary glue candidates are: command files, menus.
knowledge was already covered ... the process parameters files, editor scripts, and I/O filters.
of developing rules for a given task was consid-

- erably simplified by the fact that much of the 5.2.2 The Prototype Construction Environment
necessary knowledge had already been codified
for rules in other tasks." This experience will The prototype construction environment
most likely be duplicated for reusable source provides builders with a software data base of
code. reusable Ada code units, a prototype construc-

tion facility, an Ada component generation
When a reusable module is not available capability, and access to large components from

there are two choices: build the module from other Ada repositories such as the Simtel
scratch or use some function of a complete pro- Library on Arpanet. The prototype construction
gram such as a text editor, spreadsheet, graphics environment allows the builder to:
package to complier. New components may be
"hand crafted" according to the reusability 0 construct. modify. debug and compile
guidelines, inserted into the software base and individual Ada units, L
extracted under software base control. How- co, • construct a prototype by combining
ever, for a prototype of a state of the art sys- (reused and new) units using a set of
tern. there will be many missing functions and composition operators.
hand crafting each one will cause a bottleneck.
Therefore we are looking into providing new • exercise and debug the prototype
modules with executed specifications and/or under construction.

- application generators.
The prototype environment is designed for

Application generation has been applied prototype construction using Ada. It offers the
mainly in the business area. Honeywell's Corn- option of developing prototypes solely by com-
puter Sciences Center is currently working on posing available Ada units, and allows a builder
an application generation capability for manufac- to create or tailor individual units for prototypes
turing systems [BELL]. One of RaPIER's of state of the art systems, such as mission

149

critical embedded computer systems, which can- prototype program under software base control.
not be constructed entirely from reusable
software. The composition operators are (4)
explained below.

The catalogue contains schemas describing
The prototype construction environment's all the software modules in the software base.

platform is the Symbolics 3600(0) developer's It also maintains each module's history, record-
workstation: it is designed to be linked in a local ing such information as versions of a module
area network such as Ethernet. This worksta- and the software base operator used to derive
tion can be networked to a shared software base this module.
management system containing the reusable
Ada units and ancillary information about these The software base operators allow users to
units, such as behavioral specifications or corn- compose prototype programs out of existing
piler generated symbol tables. procedures or tasks. Each operator represents a

mapping from a set of such procedures or tasks
5.2.3 The Software Base and It Management to a new application programs. The mapping is

implemented by generating a procedure or task
The software base in both the repository that invokes other modules according to the

for RaPIER's inventory of reusable Ada PSDL specification given.
software and the agent for composing that
software into prototypes. The software base This example illustrates the software base
concepts we plan to use were developed at the real-time operator PERIODIC. A digital filter
University of Maryland [YEH]. samples an analog signal every 100 ms., com-

putes the frequency and amplitude of the signal
The components of a software base system and outputs that signal if it is within the filter-

are [YEHI: ing range. Here are the steps for using the
software base to generate a filtering program:

(1) A Module Query Language
(1) Query the software base catalogue:, find

The query language is used to access the procedure F, a filtering function that per-
module descriptions. It enables users to browse forms the required operation.
through the software base, and find the (2) Use the software base operator
module(s) they need. PERIOD(F,100ms) to specify the execu-tion constraints. PERIODIC(F, lOOms)
(2) A set of Software Base Operators to osrit.PROI F ~s

means that procedure F should be called
periodically with period equal to lO0ms• .'

Very high level software base operators pe q t
enable users to compose new application pro- (3) Using its pre-defined code template for
grams out of existing modules in the software PERIODIC, the software base then
base. automatically generates the following

code:
(3) A Prototype System Description Language Procedure F
(PSDL) - existing code in the software base.

end:
The PSDL is a uniform notation for Procedure Main

describing prototypes at all levels of design. It Loop - period loopallows a designer to concentrate on the proto- T:-get-time(; - remember the time
type design task without the distraction of entering
transforming the prototype description into
another notation such as an Ada program. The aPerod -lCall F; -Perform the filtering
operands in a prototype description are names functio

of reusable components. The operators imple-
ment data, control and function abstractions. Loop - delay loop
The PSDL description is mapped into a (1) trademark

150

5,*..,

- -- - -- -- , - - nr- -nr - o - ..l

exit (get-timeO-T= lOOms);- wait until for There are two candidate methods for
-the period time over structuring comments. One is to define a

- .,' end: hierarchical set of categories (analogous to the
end: Computing Reviews Classification System [SAM-

MET]) from which developers choose a classifi-
" .The main program generated by the cation for each component entered in the

software base fulfills the constraint specified by software base. For example, a subprogram that
the operator. Note that the operator specifica- sorts integer arrays in ascending order using the
tion is at a high level, so that it is very close to quicksort algorithm might be classified "SORT,
the problem requirement. We hop to achieve ASCENDING." This convenient initial con-

*ll[rapidity of prototype construction both by reus- vention is, however, too limited for use in a . ,_
ing software and be specifying prototypes in heavily populated software base. Either too
terms of high-level software base operators, many component would be retrieved under the

same classification, or the classification scheme
T.2.4 Software Specifications would be under constant refinement to discrim-

str o on inate finely enough, necessitating constant
The key to reusing a software component software base restructuring.

is knowing its interface to the environment and
its external behavior. A software component's Commenting standards and indexing tech-
interface is the collection of parameters and glo- niques offer a finer level of descriptive granular-
bals it uses for information exchange with its ity. Standards would establish that certain
environment, the operations it offers the characteristics of each component must be
environment and the operations its environment presented in a natural language comment at the
provides to it. Its external behavior is the head of that component (for example, "sorts
changes it causes that are visible in its environ- integer arrays in ascending order using the
ment. The keys to exploiting a software base quicksort algorithm"). Those natural language
are: (1) a query or browsing facility that allows comments could be indexed by the key work in
a developer to search for a module with some context ("KWIC") method. The developer
desired external behavior or interface, (2) a way could browse the keywords of interest and

. of specifying that behavior and interface, and access components whose comments were
(3) a specification of a module's characteristics promising for the more detailed specification.
such as execution time and space, re-entrant

" code, recursive implementation. This third fac- Ultimately, because real-time ECS
tor may be less important in prototyping than in software is complex and subtle, a component's
reusing code for "real" systems. specification should be presented in a formal

language such as a first order logic. Developers
The software base management system would then browse the software base by corn-

provides a specification-based browsing facility, posing formal specifications that the software
The specification of the Ada components used base management system matched against the
for prototype construction has two parts: (1) an specifications of existing components. The
Ada language interface specification comprising problem of searching for equivalent, or suf'i-
the task, package. subprogram, or generic con- ciently similar, formal specifications is still a
text clause (<with-clause>) and declarations research issue.
[DOD], and 2) a behavioral specification writ-
ten initially as a structured comment. The 6 CONCLUSION
software base management facility retrieves
components using some keywords appearing in Rapid Prototyping to identify true user
those structured comments. The prototype needs has the potential for improving the qual-
developer locates a component by comments, ity of software developed at Honeywell.
and then views its Ada language interface Current rapid prototyping techniques do not
specification for construction information, such offer a systematic way for develooers to con-
as the number and types of the parameters it struct, execute, and incorporate results of proto- .
requires. type use into a system specification. The

RaPIER system, under development at

151

, ... -..-._....-.......-......-... .. ---..-.. '.-.-....-........-......-.-._..-.... >
I=' 1 -' 11 . .. I - .-"11.1. i, . . .

Honeywell, will provide a rapid prototyping Kaspar, Lipow, MacLeod, Merrit.
. approach based on reusable Ada components is Characteristics of Software Quality,

a software base. 1978, xxix. I le

This system will allow users who are not [BROOKS]
- gurus" to develop prototypes quickly and reach P. Brooks, Jr. The Mythical Man-

an agreement with users what the system really Month, 1975.
should do, so that true user needs are met.

[CHEATHAM]
7 BIBLIOGRAPHY Thomas E. Cheatham, Jr. "Reusability

through Program Transformations,"
[BALZER] IEEE Trans. on Software Engineering.

Robert Balzer, N. M. Goldman, D. S. Vol. SE-10, No. 5, September 1984,
Wile. "Operational Specifications as 589-594.
the Basis for Rapid Prototyping," ACM
SIGSOFT Software Engineering Notes, [CORBATO]
Vol. 7, No. 5, December 1982. F. J. Corbato, C. T. Clingen. "A

Managerial View of the Multics Sys-
[BARSTOW] tem Development," Research Direc-

David Barstow. "On Convergence tions in Software Technology, 1979,
Toward a Database of Program 139-158.
Transformations," ACM Trans. on Pro-
gramming Languages and Systems, Vol. [DAVIS]
7 No. 1, January 1985. 1-9. Alan M. Davis. "Rapid Prototyping

Using Executable Raquirements
[BATES] Specifications," ACM SIGSOFT,

Joseph L. Bates. Robert L. Constable. Software Engineering Notes, Vol. 7, No.
"Proofs as Programs," ACM Trans. on 5, December 1982. .-
Programming Languages and Systems, C_
Vol. 7. No. 1. January 1985, 113-136. [DOD]

United States Department of Defense.
[BELL] Reference Manual for the Ada

Robert Bell, Hany Atchan, Paul Sta- Language, January 1983.
chour. "A Comparative Review of
Selected Application Generators," [HOOPER]
Honeywell Computer Sciences Center James W. Hooper, Pei Hsia. Senerio-
Technical Report, in preparation. Based Prototyping for Requirements

Identification. December, 1982. 89-90.
rBIGGERJ

Ted J. Biggerstaff. Alan J. Perlis. [HOROWITZ]
"Forward: Special Issue on Software Ellis Horowitz, John B. Munson. "An
Reusability," IEEE Trans. on Software Expansive View of Reusable
Enineering, Vol. SE-10. No. 5, Sep- Software," IEEE Trans. on Software
tember 1984. 474-477. Engineering, Vol. SE-10, No. 5. Sep-

tember 1984. 477-487.
[BLAIR]

David C. Blair, M. E. Maron. "an [LANERGANI
Evaluation of Retrieval Effectiveness Robert G. Lanergan, Charles A. F
for a Full-Text Document Retrieval Grasso. "Software Engineering with
System," Communications of the Reusable Designs and Code," IEEE
ACM,. March 1985. Trans. on Software Engineering, Vol.

SE-10, No. 5, September 1984. -:::: [BOEHM] 'I
• Barry W. Boehm, John R. Brown. [MCCO]

152

"....'..,.,..-..-.... .. ,........... . ..---- ,

G. C. McCoyd. J. R. Mitchell. "Sys- [IBM Systems Journal, Vol. 13, No. 2.
tern Sketching: The Generation of 1974, 115-139.
Rapid Prototypes for Transaction
Based Systems," ACMV SIGSOFT [TAYLOR]
Software Engineering NVotes, December, T. Taylor, T. A. Standish. "Initial I
1982, 127-132. Thoughts on Rapid Prototyping Tech-

* [SAMETIniques," ACMf SIGSOFT Software
(SAMMET1Engineering Notes, December 1982,

Jean A. Sammet. "The new (1982) 160-166.
Computing Reviews Classification
Scheme - Final Versions." CACML [YEHJ I
Vol. 25, No. 1, January 1982. Raymond T. Yeh. Nicholas Rousso-

poulos. B. Chu. "Management of
* SMITH] Reusable Software," IEEE COMPCOM.

D. A. Smith. Rapid Software Proeotyp- September 1984.
ing, Technical Report Number 187.
University of California -Irvine, [ZAVE1
May 1982. Pamela Zave. "Case Study: The

PAISLey Approach Applied to its own
(STEVENS] Software Tools." Bell Laboratories

W. P. Stevens. G. J. Myers. L. L. Technical Report, unpublished.
Constantine. "Structured Design." undated.

153

• ,.

MODELING A REAL-TIME EMBEDDED COMPUTER

SYSTEM USING ADA: SOME PRELIMINARY RESULTS

Frank L. Friedman
Paul A.T. Wolfgang

Computer Sciences Corporation
Defense Systems Division
304 W. Route 38. Box N
Moorestown, NJ 08057

January 1985

.4 bstract

The A4 da* programming language was designed to address computer programming needs for the
real-time, embedded computer system problem domain. Despite this]act, the main issues related
to modeling specific real-time, embedded applications in Ada are not well understood. This paper
describes some preliminary results of a CSC Internal Research and Development experiment r.
involving the restructuring and recoding in Ada of components of a real-time memory-constrained
embedded computer system.

The system selected Jbr study is a ship-board defensive combat system designed to coordinate
radar, weaponry, communications, command, and decision functions distributed on a special-
purpose multiprocessor. shared-memory architecture. The system runs on a real-time interrupt-
driven, table-directed Executive.

The main thrust of our experiment is to ascertain the extent to which features of the current Exe-
cutive tasking model can be mapped into Ada using *he tasking, preemption, and priority support
provided. The extent to which the Ada run-time environment must be augmented to support le-ve
cutive features such as dynamic priorities, task/enty point priority assignment and restrictive
preemption is also under investigation.

Introduction support the packaging of data and operations in a

manner conducive to ensuring clearly defined

The executive program being studied is an interfaces while hiding implementation details.

extension of an earlier tactical executive program Ada was also designed to handle concurrency.

developed at CSC in the early 197 0's for use in providing an explicit tasking mechanism for
an embedded ship-board weapons system. The representing interprocess communication and

system is written in CMS-2 and supports mul- control algorithms without forcing the program-

tiprocessing, memory sharing, and real-time mer to step outside the high level language

interrupt services on a special-purpose, on-board environment.
computer. Thus Ada has the potential of supporting

Both the weapons system and Ada address much of the behavior of the weapons system and

the notions of modularization and reusability. its Executive. The goal of this work is to ascer-
controlled data access. and the specification and tain the extent to which features of the current
use or asks cailed modules n the weapons sys- Executive tasking model can be mapped into Ada

tem) as the basic system work units. The reusa- using the tasking support provided by Ada. The

bility concept was-major motivating factor in the extent to which the Ada run-time environment
must be augmented to support specializeddesign of' Ada. The data abstraction facilities ms eagetdt upr pcaie .[,
features of the Executive such as changing priori-

'Ada is a registered trademark of the US ties, task/entry point priority assignment, and
Government Ada Joint Program Otfice preemption restrictions is also being studied. Our

155

.. "

focus is to take a more detailed look at the Exe- and periodic processing. For most modules,
cutive tasking model, identify the major problem however, one or more of the seven entries will
areas in representing the Executive in Ada, and be undefined (null) and therefore not schedul-
suggest possible solutions, including perhaps, able.
changes to the Executive which would allow it to The scheduling and eventual execution

better fit the Ada model without sacrificing any (dispatching) of all module entry points is
of the original functional requirements. managed through a Priority Schedule Queue

In the first phase of this experiment, which (PSQ). With but one or two exceptions, entry
is the phase discussed in this paper, we have lim- points to be executed must first be entered into
ited the scope of our study to an analysis of the the PSQ ordered by priority. The Executive uses
scheduling and dispatching functions of the a two-tier priority scheme with a preemption
ATES Executive, and the relationship between priority (the major priority) governing execution
these functions and a small subset of the preemption, and a scheduling priority (the minor
weapons system applications modules. System priority) which is used together with the preemp-
functions related to initialization, periodic tion priority for maintaining the order in the
rescheduling, priority assignment, preemption, PSQ. A schedulable module entry point may be
common data access, and module communication dispatched (subject to preemption restrictions)
are currently being studied and recoded in skele- when it reaches the front priorities associated
tal form in Ada. with a module entry point to be altered via

requests to the Executive.
An Overview of the Executive The scheduling of a module's initialization,

The Executive is divided into two major error processing, and successor entry points may
functional units, an executive service program be done by other application modules. All other
which provides the nucleus of executive services entries may be scheduled only via requests to the
to control the CPU. input and output channels. executive. In addition, module initialization is
and memory: and a dependent executive pro- scheduled directly by the Executive whenever
gram, which provides user dependent services for system initialization is required.
a particular tactical application. These services Periodic entries are scheduled directly by
include system initialization, interrupt handling, the Executive each time a countdown clock inter- - -
scheduling and dispatching, memory manage- rupt occurs. Schedulable periodic entries are
ment, message processing, input/output and dev- stored in a separate periodic queue (PQ) ordered
ice processing, error processing and recovery, by "next-time-to-go". At each countdown clock
intercomputer communications, common service interrupt, all ready-to-go periodics are deleted
routines (such as for mathematical functions), from the periodic queue and entered into the
and performance measurement and debugging PSQ (subject to conditions concerning duplicate
support, periodic entries in the PSQ). If a periodic entry

There are currently four tactical applications is "reschedulable", a new time-to-go is deter-
elements serviced by the Executive. The basic mined and the entry is reinserted into the
work unit of these elements is the single-function periodic queue. The reschedulable and mul-
tactical applications module. These modules per- tischeduling status of a module's periodic
form functions related to carrying out the system entrance may be changed via requests to the exe-
mission. including the acquisition, processing, cutive.
evaluation, and display of tactical data. Preemption of an executing module entry

point may occur only when an entry point of
The Executive Tasking Model another module with a higher preemption priority

Executive applications modules may be has reached the head of the PSQ, and the
scheduled for processing at any one of at most currently executing module entry is in a preempt-
seven entry points, one for each of the primary able state, Preemption is not allowed if the
processing activities performed by the module. preemption entry is from the same module as the
The entry points for all modules are the same, currently executing entry. or if it is from a
one each for initialization, message processing, module with a previously activated but
error processing, successor processing. buffer preempted entry waiting for completion.
complete functions, channel complete functions,

156

:: ~~~~~~~~~~~~~~.................. ..-. -.............-....... ,..-.. .,.,----.,......,,---,--,-.-:::-

Application Module Interfaces periodic entry points (removal from the
periodic queue and insertion into the

Application modules communicate with the schedule queue), and for the random inser-
Executive in basically four ways: tion into the PSQ of other schedulable

entries. The External Environments Task .
I1) via the use of ESR's: runs at the highest system priority level.

(2) via the use of common (system data): (3) The Initialization Procedure (EXEC INIT)
which implements a part of the Executive %

(3) via information packets returned by the initialization, including the initialization of
Executive: the periodic and priority schedule queues

(4) via system temporary storage. and the activation of the initialization entry
points of the applications modules.

Modules may interface with other modules (4) The Schedule Package (SCHEDULE) which
and with the Executive via system common data. manages the queing and dispatching of all
There are various levels of common data, such as schedulable module entry points (through
the common data base for an applications the PSQ).
module, and the more global common system (5) The Periodic Scheduler Package (PER .
data base. Modules must follow special conven- SCHED) which manages the initial build
tions in accessing an application module also may and subsequent insertions and deletions of
communicate with the Executive by issuing all periodic entries (through the periodic
requests for executive service (ESR's). There queue).
are two types of ESR's that can be issued: a
request for settypes of ESR's. the require (6) The Applications Module Packages each of
module upon service completion. which models one radar system applications

module. Each module is actually modeled
Modeling Scheduling, Dispatching, and Com- using two packages: a data package, contain-
munication in Ada ing all of the global types, constants, and

data structures processed by the module,
The experiment described in this paper and a task package, containing a task with

involves the construction in Ada of skeletal ver- seven entry points, which models the exe-
sions of several applications modules from the cutable portion of a module. These tasks
radar system element and 20 or so ESR handlers. operate at the full range of priorities below .-

These components are being combined into a the top two system priority levels.
small mock-up designed to simulate the schedul-
ing and dispatching functions of the Executive. as
related to the applications modules and their ESR
requests. The project was begun in November, Figure 1 also shows several data packages
1984, and is still in the midst of an iterative, (EXECSYS,MML, and MTMLE) that have
step-wise design and implementation process. been implemented as part of the communications

interface for the system skeleton. While we have
An overview of the skeletal system as it i used packets to communicate information

currently envisioned is shown in Figure 1. The bsew een the Exctive cathe applicationurnlmain componentsenii eofi the system urare described between the Executive and the applications_.-
mno nt modules, we have retained the table structure of
below, the Executive as the primary source of informa-

tion for event tracing and system decisions. Each
1) The Executive Task (EXEC TASK) which table required in the system mock-up. such as

serves as the parent for all ESR processing the Master Moreseparate packages to be accessed
modules, and which contains an entry point only as needed through the use of query or
for each ESR and interrupt that is being update procedures which are also a part of the

| supported. This task operates at the next- package. Only the procedure interfaces are visi-
to-the-highest priority level in the system. ble outside the package. and these are accessible

Z) The External Environments Task only to selected system components.
(EXTENVRN) which provides a very
coarse simulation of interrupts that are Preliminary Findings
external to the portion of the Executive t:
that is currently being modeled. This task The design shown in Figure 1 reflects a

provides a mechanism for the processing of 'ery deliberate effort to begin this project by cod-

157
I "°

................................

rr~r. -~ ~. * 10

E*. . *

P~kAP bldul,

tio Tale fs(Law IT)

Executive TaskE~ternallsw-Intaizto

Imwt cll Uwt all 4(A"~ Tas)

(tasks Dispatchi rcallsAn

proc sing Dispatchadl sd I~d ,Ino D~t

Scuhedul~Ovrveofte bucu i/plcto~ oue Sse kltv

CPU Reques8

...

S k-

ing in Ada a mock-up of the Executive which weapons system.
mirrors as closely as possible the current features The Ada priority scheme has caused other
of the system. With the exception of dynamic minor complications as well. The Executive uses
priorities, which clearly cannot be handled within a two-tier priority scheme with potentially 66
the Ada tasking model. we have tried not to different levels of urgency. Ada, on the other
deviate in any substantial way from the original hand. supports only a single-tier priority scheme.
major design decisions for the weapons system. Furthermore, our version of Ada (NYU Ada/Ed)

Within this framework, we have already allows only ten levels of urgency. The single-tier
encountered a number of difficulties in attempt- priority problem is easily handled through a sim-
ing to model the Executive tasking scheme in pie function that can be used to map the Execu-
Ada. One of the major problems was caused by tive two-tier priorities to the single-level of Ada
the fact that Ada does not permit the association (and vice-versa).
of priorities with individual task entries, but only The levels of priority limitation is not a
with the task itself. Since Ada allows task invo- serious problem for our small system mock-up.
cation via explicit references to task entries it We are assuming that compilers targeted to
seems inconsistent not to allow these entries to embedded computer systems will eventually sup-
be assigned their own priorities, port some number of priority levels that is con-

One possible approach to solving this prob- sistent with the functional requirements of tacti-
tern is to represent each applications module as cal systems. For the time being, we are simply
seven Ada tasks. one for each entry point. While mapping Executive priorities onto the ten levels
this appears to be a workable solution, it does not supported by Ada/Ed.
provide for a very accurate view of the current The Executive preemption scheme has been , "
Executive model, even if these tasks are pack- another source of difficulty in the design of our
aged in a single unit. This solution also makes it Ada mock-up. The Executive allows one module
slightly more difficult for our system mock-up to entry to preempt another only if the executing
correctly model the preemption restrictions and module is in preemptable mode, and then only if:
multiple periodic scheduling rules of the Execu-
tive. o the preemption (major) priority

of the waiting module entry is.-
We have chosen instead to retain tfe one- hiher than the preemption is

task/seven-entry model n Ada. but we have hiorithan the eemtin L

added an additional level of tasking (see Figure pr ote ig.
2) Each schedulable entry in a module task con-

siss o anaccpt-o bockwhih cntans llo the module id of the waitingiist of n acepEdo bock hic conainsallmodule entry does not match the id of%
code required for saving entry parameters and a
statement hat references .et another task, which currently preempted module. a

actually carries out the work to be done at that L
entry. This task is assigned a priority, P. that The latter condition requires that we keep
reflects its relative level of importance in the track of the module id for all module entries that
current Executive. This solution is illustrated in have been preempted and not yet completed.
Figure 2. This is a definite step in the wrong direction,

In this model, whenever a task entry point since one of the primary goals in this project is to
rendezvous occurs. the code in the accept-do use the Ada priority/preemption model as much
block will execute with the priority of the caller, as possible to keep track of the environment and
which is always at a higher priority. Since all task status of preempted tasks. so that the entire
entries are referenced from the scheduler, and scheme would be transparent to the programmer.
:he scheduler is a orocedure in a package that is The imount of added user code involved in
nested !n EXEC MAIN (!ee Figure 1). the ren- tracking reeempted modules has not yet been
dezvous. including the reference to the entry completely determined.
point task. will execute at the priority of the Exe-
cutives. Once the entry point task has copied its Summary and Conclusions

parameters. ;t Iea,es its accept-uo block, and is At this point, it is clear that Ada has the
ready to continue executing at the same relative potential of supporting much, but not all of the
priority, P. that it was assigned in the original underlying behavior of the Executi,,e program.

....................

...................- .-. .. .- . . __._-_•_•______-_..__,____________._.__-____.-________.__________-_____'._._•___

Aplication Module Task

reference to a
task (module) -) accept ... do Entry Point Task

entry point * (pragma PRIORITYCP)

* j (code to
* * save entry

* jarguments) r ~accept
* L I * (module

reference to I entry
the entry point

and accept block [lad Entry PitTs
lnd Application Module Task

Figure Zi Tasking Schematic for Entry Point References in
Application Module Tasks .,

F-1

160 ',

I,°

-. - . j. . * . *. *.-.-,,.--

Since we are currently examining only a small support a typical real-time tactical embedded
part of this program, it is certain that we have computer system. We are concerned too, about
uncovered only a few of the major problems the efficiency with which Ada run-time systems ,.
associated with writing real-time systems in Ada. will support recoded Executive functions and --

The planned evaluation of additional weapons about the portability of such systems. Others k
system components for input/output processing (see (4) and (5) seem to have similar reserva- '>,

interrupt, error, and message handling, common tions. Unfortunately, an Ada environment
service routines and other implementation depen- appropriate to realistic studies in these areas is
dent issues will most likely reveal additional not likely to be available in the near future. -
problems. These issues aside, discussions with systems P.

It might be argued that most if not all of experts at CSC point to the need for a complete
these problems are unique to the Executive being review of the system design, both with respect to
studied, specifically. to its original design. Furth- Ada and to prospective changes in hardware. If
ermore. it is possible that all of them can be nothing else, such a review might show that dur-
eliminated by redesigning the system for eventual ing the fifteen year evolution of the system.
recoding in Ada. At this point, we are not con- some features of the tasking model have fallen
vinced. We believe that the Ada tasking model, into disuse, and that what is left can be far more
including the preemption/priority scheme and the easily modeled in Ada. perhaps with adequate
termination mechanism, may not be sufficient to time and space efficiency.

Bibliography

(I) Fisher. Gerald A. et.al., "Developing an (4) NAVSEA, "A Plan for the Aegis Transition
Ada to CMS-2 Translator", Draft Copy, to Ada". Report 0967-LP-598-9730.
Computer Sciences Corporation, San Diego, prepared for the Naval Sea Systems Coin-
CA. May 1984. mand. Washington, D.C.. June 1983.

2) Gillman. Richard. Crocker. Stephen D. and (5) Payton, Teri F.. and Horton. Michael j.,
Taylor, Craig, "Translation of CMS-2 Pro- "Study Report on the Transition of RNTDS
grams to Ada", Working Paper ISI/WP-19. to Ada", Report FR)A)-3020. prepared by
USC Information Sciences Institute, Marina Systems Development Corporation. Paoli.
Del Rey, CA, February 1980. PA. for the Naval Sea Systems Command

(3) Intermerrics. "An Analysis of the Problems (Code 06L3). Washington. D.C.. 31 July
Associated with the CMS-2 to Ada Transi- 1983.
tion". Report 0967-LP-598-9720, prepared (6) SofTech, "CMS-2 to Ada Transition Plan".
by Intermetrics Incorporated, Bethesda, Report 0967-LP-598-9750. prepared by
MD, for the Naval Sea Systems Command. SofTech Incorporated, Falls Church. VA,
Washington. D.C. June 1983. for the Naval Sea Systems C-ommand.

Washington, D.C., August 1983.

161

.

RESUME ?i, ¢;

I
FRANK L. FRIEDMAN

Senior Computer Specialist
Computer Sciences Corporation

EDUCATION
BA in Mathematics. Antioch College, Yellow Springs. Ohio
MS Numerical Science, Johns Hopkins University
MA & Ph.D in Computer Science, Purdue University
Completed CSC courses in CMS-2. AEGIS Orientation, and Ada

SUMMARY:

Dr. Friedman taught Computer Science at Temple University from 1974 to June 1984. During
this time he supervised numerous independent study and project efforts covering a wide range of topics,
including:
(1) Ph.D research for Mr. Daniel T. Joyce, involving a study of abstraction - based design and pro-

gramming methodologics and their impact upon the software life cycle.
(2) Three Masters Degree projects involving the development of programs for measuring size. control

flow. and data accessibility metrics in Pascal programs.
(3) A project involving the design and implementation of a program/data encapsulation facility for

Pascal.
(4) The design and implementation of a portable pre-processor for extended FORTRAN. The pre-

processor was used on over one dozen mainframe computers at over 100 university and industrial
sites in the United States and abroad.

CURRENT INTERESTS

Since coming to CSC in June 1984, Dr. Friedman has been involved in studies of approaches to
building system software using Ada, primarily in a real-time embedded systems environment. This
work thus far has touched on areas such as:

(1) the use of Ada as a Program Design Language
(2) the applicability of various design methodologies to the real-time Ada environment and to the use

of Ada in general
(3) the identification of features of programming support environments critical to the proper use of

Ada both at the design and the implementation stages of system development
4) programming-in-the-large %ersus programming-in-the-small

(5) system component adaptability and reusability,
The goals of this research are:

(1) to identify and classify common, low-level components that form the kernel of a real-time embed-
ded system:

(2) to represent these components in Ada as parameterized primitives for use as the building blocks
for higher level components:

(3) to identify and classify architectural level paradigms common to embedded systems--

162
.. -J

-- 2

*! (4) to represent these paradigms in Ada as higher level design templates providing a canonical, PDL-
like form for both the architectural and detail level components of a system.

Dr. Friedman is currently working on a project to recode a portion of the AEGIS Tactical Execu-
tive System and Applications Modules in Ada.

PAST PROFESSIONAL EXPERIENCE

(1) Systems Analyst, Computer Group, USNSRDC, Annapolis, MD, 1965-67

(2) Instructor. Mathematics and Director, Computer Center, Goucher College, Baltimore, MD,
1967-70.

1-

-.-.* .,* *** 4- .-'
- *.".~ ,- - •-°.**.-

-. U..-.

ORIENTATION

GOAL.
TO GAIN A BETTER UNDERSTANDING OF MAJOR
PROBLEMS ASSOCIATED WITH MODELING A REAL-TIME
EMBEDDED COMPUTER SYSTEM IN Ada

SPECIFICALLY, TO ASCERTAIN:
* THE EXTENT TO WHICH THE CURRENT EXECUTIVE

TASKING MODEL CAN BE MAPPED INTO Ada USING Ada's
SUPPORT FOR:

- TASKING
- PREEMPTION

-PRIORITY

THE EXTENT TO WHICH THE Ada RUN-TIME ENVIRON-
MENT MUST BE AUGMENTED TO SUPPORT SUCH EXECU- Li
TIVE FEATURES AS:

- DYNAMIC PRIORITIES

- INDIVIDUAL TASK/ENTRY POINT PRIORITIES L-
- RESTRICTIVE PREEMPTION

5029-2

164
-:: ,- , ,

SELECTED EXAMPLE
'"-- SHIPBOARD DEFENSIVE COMBAT SYSTEM

EXECUTIVE AND FOUR TACTICAL APPLICATIONS ELEMENTS

COORDINATION FOR:

RADAR
WEAPONS CONTROL
COMMUNICATIONS
COMMAND AND DECISION

EXECUTIVE:
REAL-TIME
EVENT-DRIVEN
TABLE-DIRECTED

TWO COMPONENTS:
1. NUCLEUS - PROVIDES SERVICES TO CONTROL CPU, I/0, AND MEMORY (HANDLES

INTERRUPTS, MESSAGES, INTERCOMPUTER COMMUNICATION, SCHEDULING, AND
DISPATCHING)

2. DEPENDENT EXECUTIVE - SERVICES PARTICULAR TACTICAL APPLICATIONS

TACTICAL APPLICATIONS MODULES
1. SEVEN INDEPENDENTLY SCHEDULABLE ENTRY POINTS, EACH WITH ITS OWN

DYNAMIC PRIORITY

2. MODULES COMMUNICATE VIA
E EXECUTIVE SERVICES REQUESTS N INFORMATION PACKETS
a COMMON SYSTEM DATA * SYSTEM TEMPORARY STORAGE

SYSTEM IS CODED IN CMS-2 (MOSTLY)

HIGHLY MODULARIZED U.
SMALL COMPONENTS
RIGOROUS NAMING AND STYLE CONVENTIONS

SPECIAL-PURPOSE MULTIPROCESSOR WITH SHARED MEMORY L9
5029-3

b ", .- ~165 " -..

-,S .. S °

* -- * .5 * . **.~ *55S.S S . . .S.. -

SCOPE OF STUDY

ANALYZED

* SCHEDULING AND DISPATCHING FUNCTIONS OF THE EXECUTIVE

N RELATIONSHIP BETWEEN THESE FUNCTIONS AND A SMALL SUBSET
OF RADAR SYSTEM APPLICATIONS MODULES

CURRENT SYSTEM FEATURES MODELED

* SCHEDULING AND DISPATCHING
- PRIORITY SCHEDULE QUEUE (PSQ)
- PSO BY PRIORITY
- DISPATCHING FROM FRONT OF PSQ.

* TWO-TIER PRIORITY SCHEME

- MAJOR PRIORITY - GOVERNS PREEMPTION
- MINOR PRIORITY - GOVERNS SCHEDULING (TOGETHER WITH MAJOR PRIORITY)

* SEPARATE PRIORITIES FOR EACH ENTRY POINT

* PRIORITIES CHANGED VIA ESRs

m RESTRICTED PREEMPTION
- HIGHER PRIORITY MODULE MUST BE AT THE HEAD OF PSQO
- CURRENT MODULE MUST BE PREEMPTIBLE
- PREEMPTION NOT ALLOWED IF ID OF PREEMPTING MODULE

1. IS THE SAME AS THE ID OF A CURRENTLY EXECUTING MODULE, OR
2. IS THE SAME AS THE ID OF ANY SUSPENDED MODULE

* PERIODIC ENTRY POINTS
- SCHEDULED DIRECTLY BY THE EXECUTIVE WHEN THE COUNTDOWN CLOCK

INTERRUPT OCCURS
- SCHEDULABLE PERIODICS STORED IN PERIODIC QUEUE (PO) ORDERED BY

"NEXT-TIME-TO-GO"
- AT CLOCK INTERRUPT, READY-TO-GO PERIODICS PUT IN PS0 AND DELETED

FROM PQ; SOME MAY BE REINSERTED INTO PQ S-4'-

166

., -..- . . .,. ... ;-' :-.- -. -, -,- •' ",- " - ..- -. - •5 -- . , :. - - -

THE Ada MODEL
I

.'r
* ., -

PURPOSE

* BUILDING A SMALL, SKELETAL SYSTEM MOCKUP TO SIMULATE
THE SCHEDULING AND DISPATCHING FUNCTIONS OF THE
ORIGINAL SYSTEM

SYSTEM OVERVIEW

* EXTERNAL ENVIRONMENTS TASK - COARSE SIMULATION OF
EXTERNAL INTERRUPTS

R INITIALIZATION PROCEDURE- HANDLES INITIALIZATION,
INCLUDING THAT OF THE PSQ AND PQ

* EXECUTIVE TASK - PARENT FOR ESR HANDLERS

* SCHEDULE PACKAGE MANAGES QUEUING AND SCHEDULING
OF ALL MODULE ENTRY POINTS

N PERIODIC SCHEDULER PACKAGE MANAGES PQ

' APPLICATIONS MODULE PACKAGES - EACH PACKAGE PAIR
MODELS ONE RADAR SYSTEM APPLICATIONS MODULE

m DATA PACKAGES - TABLE STRUCTURE OF THE EXECUTIVE
RETAINED AS THE PRIMARY SOURCE OF INFORMATION FOR
EVENT TRACING AND SYSTEM DECISIONS; EACH TABLE IS IN A r
SEPARATE PACKAGE THAT MANAGES QUERIES AND UPDATES

5029-5

16

,.' ";' "167 i

," • •

THE Ada MODEL (Cont'd)

SYSTEM OVERVIEW (TOP LEVELS)

EXEC__MAIN
EXEC__SYS MML

MAIN
EXEC SYSTEM - - - - PROCEDURE - - - -MASTER

PACKAGE MODULE
LIST

MTMLE ~7

LOAD /(TOP LEVEL)

EVALUATION
TABLE

MODULE
EXEC-TASK /EXTENVRN EXEC_ NIT PACKAGES

[PPCATIONS
EXECUTIVE TASK EXTERNAL ENVI- INITIALIZATION MODULES -

IESR ENTRIES) RONMENT TASK PROCEDURE (Ads TASKS)

DISPATCH I ~BUILD .-

EXAMINE AND

TASKS FOR ENaUEUE EXAMINE

PROCESSING jAND APPLICATIONS
ESRs * DISPATCH PER_SCHED MODULES

SCHEDULE

BUILD

ENOUEUE SCHEDULE PERIODICS
CPU SCHEDULE

REQUEST INSERT PACKAGE
PACKAGE

DISPATCH(LEVEL TWO)

(LEVEL THREE AND BELOW LOWER LEVEL SUPPORT MODULES)

5029-6

168

THE Ada MODEL (Cont'd)
CURRENT STATE

C,-.

, EXTERNAL ENVIRONMENTS PROCESS

E A TASK

- SIMULATES SELECTED SOFTWARE INTERRUPTS

- CONTAINS A DELAY

PERIODICALLY (UPON AWAKENING)
1. MOVES READY-TO-GO PERIODICS FROM PQ TO PSQ
2. REINSERTS SELECTED PERIODICS INTO PQ
3. RANDOMLY INSERTS SELECTED MESSAGE, SUCCESSOR.

BUFFER, AND CHANNEL COMPLETE ENTRY POINTS INTO THE
PSO

4. CALLS DISPATCHER
5. GOES TO SLEEP

ci- RUNS AT HIGHEST PRIORITY:
PRIORITY'LAST

* INITIALIZATION PROCESS

E A PROCEDURE

- PERFORMS SYSTEM INITIALIZATION (WORK THAT
MUST BE DONE BEFORE THE SYSTEM BECOMES
OPERATIONAL)

- ACTIVATES INITIALIZATION ENTRIES OF APPLILA-
TIONS MODULES

- INITIALIZES PQ AND PSQ:

- RUNS AT HIGHEST PRIORITY:
PRIORITY'LAST

5029-7

169

r

•-.. . . -

i

THE Ada MODEL (Cont'd)

CURRENT STATE (Cont'd)

I EXECUTIVE PROCESS

l ATASK

- PROCESS IS CYCLIC

- INCLUDES LOOP/SELECT CONTAINING ENTRIES
(ACCEPTS) FOR 20 ESRs

1. MODULE TERMINATION/EXIT (WITH/WITHOUT RETURN)
2. SUCCESSOR RETURN

F3. PERIODIC SCHEDULING
4. PERIOD AND PHASE CHANGES
5. CHANGE PREEMPT STATE r6
6. CHANGE PRIORITY

- RUNS AT PRIORITY'LAST -1

N PACKAGES FOR MANAGING PSO AND PQ

-INCLUDES PROCEDURES FOR SCHEDULING MODULE
ENTRIES AND DISPATCHING SCHEDULED ENTRIES TO
THE CPU (PSQ ENTRY AND REMOVAL)

ALSO HANDLES REMOVAL AND INSERTION OF PERIODICS
IN PERIODIC QUEUE

5029-8

170

.. •... ... , .. ._._.,.-..-,..... . ..• ,- %" ~~~~~~~~~~. °,, ."o' "'......" ,;,, , .. '*.', ,....

THE Ada MODEL (Cont'd)

CURRENT STATE (Cont'd)

APPLICATIONS MODULE PACKAGES
L

- PACKAGED IN PAIRS: EACH PAIR MODELS ONE RADAR
SYSTEM APPLICATIONS MODULE

1. GLOBAL DATA PACKAGE - DATA TYPES, CONSTANTS, AND DATA
OBJECTS REFERENCED BY THE MODULE

2. TASK PACKAGE - SINGLE TASK

a. MODULES EXECUTABLE CODE

b. LOOP/SELECT WITH SEVEN ENTRIES (ACCEPT/DO)

c. FOR EACH DEFINED ENTRY:

(1) PERFORMS HOUSEKEEPING FOR DATA COMMUNICATION
(DEFINITION OF LOCAL OATA OBJECTS)

(2) CALLS SEPARATE TASK TO PERFORM WORK (TASK HAS ITS
OWN PRIORITY)

(ONLY ONE APPLICATIONS MODULE IMPLEMENTED THUS FAR)

5029-9

17
...................................... -.

.

- -. 7 IT . ,- -3- 4 .. = .. V i .

PRELIMINARY RESULTS
I

0 DELIBERATE EFFORT TO CODE MOCKUP OF EXECUTIVE THAT MIRRORS
AS CLOSELY AS POSSIBLE THE CURRENT FEATURES

. STAYED WITHIN THE FRAMEWORK OF Ada TASKING MODEL

- EXCEPTIONS: -
1. DYNAMIC PRIORITIES (NOT HANDLED)

2. PREEMPTION RESTRICTIONS (BUILT ON TOP OF Ada TASKING MODEL)

3. SCHEDULING ENTRIES (BUILT ON TOP OF Ada TASKING MODEL)
I-

* PROBLEMS CAUSED BY SPECIAL FEATURES OF THE EXECUTIVE
- ASSIGNING DIFFERENT PRIORITIES TO ENTRY POINTS IN THE

SAME MODULE
SOLUTIONS:

1. EXECUTABLE CODE AT EACH ENTRY POINT WRITTEN AS A SEPARATE TASK
2. REPRESENT EACH MODULE AS A PACKAGE OF SEVEN TASKS RATHER THAN ONE

TASK WITH SEVEN ENTRIES

TWO-TIER PRIORITY SCHEME WITH 66 PRIORITY LEVELS
SOLUTION: TWO-TIER SCHEME MAPPED TO A SINGLE-TIER. 66-PRIORITY PROBLEM

NOT SOLVED - AVOIDED

PREEMPTION RESTRICTIONS
SOLUTION: ADOITIONAL HOUSEKEEPING, e.g.. GLOBAL NONPREEMPT STATUS FLAG

TRACKING OF CURRENT AND PREEMPTED MODULE IDs

IF'~ 5029-10

1 72

-.- p. .

--.. :-

"p,.-.

CONCLUSIONS
I

m Ada HAS THE POTENTIAL FOR SUPPORTING MOST OF THE UNDERLYING
BEHAVIOR OF THE EXECUTIVE

* MANY OTHER PROBLEMS ARE LIKELY TO SURFACE AS THE MOCKUP IS
EXPANDED INTO AREAS SUCH AS:

- I/0 PROCESSING

- INTERRUPT HANDLING

- ERROR HANDLING

MESSAGE HANDLING

-COMMON SERVICE ROUTINES

- OTHER IMPLEMENTATION-DEPENDENT CODE

* PROBLEMS ENCOUNTERED ARE NOT UNIQUE TO THE EXECUTIVE WE
SELECTED. PROBABLY CANNOT BE TOTALLY ELIMINATED THROUGH
REDESIGN TO BETTER FIT THE Ada MODEL:

- Ada TASKING MODEL TOO RESTRICTIVE

- Ada RUN-TIME SYSTEM TOO INEFFICIENT

* Ada PROBABL Y WILL NO TADEQUA TEL Y SUPPORTANY TYPICAL REAL-
- TIME TACTICAL EMBEDDED COMPUTER SYSTEM WITHOUT SOME

AUGMENTING

N NONETHELESS, THERE IS A NEED FOR A COMPLETE DESIGN REVIEW OF
THE CURRENT EXECUTIVE. REVIEW SHOULD REVEAL:

- CURRENTLY UNUSED FEATURES OF THE CURRENT TASKING
MODEL

- REMAINING FEATURES MAY BE FAR MORE EASILY MAPPED INTO
Ada, PERHAPS EVEN WITH ADEQUATE SPACE AND TIME
EFFICIENCY 5029.11

173

S. .
..

r n '- , .

"=" L

CONCLUSIONS (Cont'd)

CONCEPT VALIDATION AND REUSABILITY

U APPROACH SEEMS IDEAL FOR ANY EVALUATION OF Ada

U Ada (WITH PERHAPS SOME GRAPHIC AIDS) SEEMS IDEAL FOR THE
DESIGN AND CODING OF SYSTEM MOCKUPS

- DESIGN AND BUILD OUTER (HIGHER LEVEL) STRUCTURES
IN Ada

PRODUCE REUSABLE TEMPLATES WITHIN THE SAME
SYSTEM (AS FOR ESR HANDLERS AND APPLICATIONS
MODULES) FOR USE IN OTHER SYSTEMS

DELAY 1 ,PLEMENTATION OF LOWER LEVEL DETAILS UNTIL
OUTER ARCHITECTURAL CONCEPTS HAVE BEEN
VALIDATED

- CHOOSE AN APPROPRIATE IMPLEMENTATION OF ACTUAL
PROCESSING PROCEDURES (CAN STAY IN CMS-2 WITH
REWRITES IN Ada ON AN AS-NEEDED BASIS)

5029-12

174
. . . o. .

".%.'.-, . . .

. . . .•- -- i

-'-- FINAL COMMENTS

... ~ORIGINAL EXECUTIVE ,.;
'" AND APPLICATIONS MODULES '

WITH DYNAMIC PRIORITIES, -.

k (MA~NUALLY DONE:"""

CODE REFINEMENT, ENSURES ADEQUATE PERFORMANCE
TIMING ANALYSIS, WITH LITTLE NEED FOR DYNAMIC

AND FINE TUNING PRIORITIES, PREEMPTION, Etc. M

CURRENT EXECUTIVE
AND APLCTOSMODULES WITH '

MINIMAL USE OF DYNAMIC PRIORITIES,"" "

PREEMPTION, Etc.

,.. EECUTIVE AN D APPLICATIONS,
" MODULES IN Ada: WRITT'EN WITHIN

THE CONFINES OF THE Ada TASKING MODEL-_

FINAL Ada VERSION WITH ••
SOME COMPONENTS SPECIFIED

OUTSIDE THE Ada MODEL SO AS TOALOW FOR DYNAMIC PRIORITIESj -.:

5029-13

175

A PROCESS VIEW FOR REAL-TIME SYSTEMS

Reusable Components Based on Separating
Knowledge and Control

Nancy Giddings

Honeywell Systems and Research Center
2600 Ridgway Parkway

Minneapolis. Minnesota 55413

December 11, 1984

ABSTRACT

Real-time, embedded software systems are becoming increasingly complex, and correspondingly
more difficult to maintain and validate. One possible software architecture which offers a possibil-
ity Jbr reuse of software components is via the separation of knowledge and control as used in
some rule-based systems. The issues surrounding this choice, as well as a comparison of this "
approach to other aggressive approaches such as functional programming and automated program
transjbrmation are given.

1.0 Introduction environments" topic area. and has since branched
into three subtopic thrusts--traditional (Ada)

The embedded software community is chal- software engineering environments, target execu- L

lenged with software requirements which: tion environments, and Al engineering environ-
ments.

o Imply rapid and aggressive
increases in the complexity of From the outset, a major tenet of our

research is that the "power" of a softwareembedded software performance.
environment or particular tools is inversely pro-

o Call for software which is portional to its generality of application. For us,

considerably easier to modify than this has meant that we have been very careful
that which results from contemporary about defining the domain of application for out

software development. methods and tools work, so as (1) to enable
tools/methods to be as powerful as is possible

There are several possible approaches to without constraining the domain ridiculously
dealing with these challenges. The ones with the small, and (2) to not mislead ourselves and oth-
greatest payoff potential call for radical changes in ers as to the applicability of our results. conclu-
*he software development process. Most result sions, and observations.
in shorter turnaround to first implementation There are two implications to this observa-
and/or automation of the reimplementation pro- tion on generality. First, it allows research to be
cess. much more directed. Since we do not believe

This paper advocates "borrowing" a software there is a universally applicable solution to the
view from the AI community for general use in 'software problem", we are not tasked with creat-
embedded systems that supports a level of reus- ing a universal, and, by our criteria, weak
able software. approach to software engineering.

* Second, constraining ourselves to a specific
.. 0 Background and Context domain allows adoption of powerful domain-

The line of research described in this paper specific concepts within the software engineering
. .'. was begun in 1981 (SILV8h) The initial investi- tools and methods. A simple example is the use
" gation was in the general "software of domain-specific vocabulary. A more complex

17

-. ,-,- - • , • A. ._..- •.

example is support for a methodology centered Desirable features of a software engineering
on reuse of a domain-specific kernel which may approach for embedded systems are:
be applicable to only a small domain. o Generation of easily modifiable

In the spirit of this intent, Section 2.1 software to accommodate
defines the domain of interest, Section 2.2 continual changes in requirements
describes the generally accepted software
development process used in this domain, and o Early and quick implementation of
Section 2.3 offers some observations on the software to allow multiple
appropriateness of the software view in light of implementation for comparison
experienced maintenance and overall satisfaction
with the software product. o Software conducive to validation

and testing.
2.1 Domain of Interest 2.2 Generally Used Software Process View

The domain under study for the research The generally used and accepted software
team is that of real-time, usually embedded, process view is that of Boehm's waterfall
software systems. Those that are not embedded (BOEH76).
still typically experience severe real-time con-
straints. Examples of such systems are process Two fundamental problems with this pro-
controllers, device controllers, autonomous vehi- cess view are (1) its inherent sequentially, and
cle controllers, autopilots, target (2) the fact that it produces only one implemen-

* recognizers/classifiers. etc. tation. The waterfall assumes that upon entering -

design, one has a fairly firm requirements
The term "real-time" as used here precludes specification. There is a very small tolerance for

systems whose only response time requirement is changes in the requirements phase. Although
human tolerance. Human tolerance is a much backward arrows exustm supposedly to depict the
less stringent constraint then is encountered in ability to iterate as needed, having to regroup and
embedded controllers. In addition, the portion of return to an earlier phase is the sign of a project
the system on which we are concentrating is the in deep trouble. Such a move basically precludes
processing, not human interface, behavior. An the possibility of bringing a project in on cost and
implication of this specialization is that different schedule budgets. Very few managers are willing
software engineering approaches may be required to endorse this strategy. Instead, one of several
for the process and the user interface, other strategies are activated: (I) the change is

Embedded, real-time controllers tend to be postponed to be performed as maintenance, or
control rather than data driven. The data struc- (2) the change is "patched" into the current ver-
tures tend to be simple. Custom device inter- sion of the system (design or implementation).
faces are required. Substantial amounts of the In one case, this assures delivery of software
system are devoted to fault isolation and manage- which doesn't meet the actual requirements. In
ment and parallel processing. Finally, the sys- the other case, this means delivery of a lower-
tems are typically event-driven. Changes in state than-desired quality product.
are triggered by selected signals/data values tog- The second problem with this process view
giing or crossing a threshold. State changes cause is that it is aimed at the development of a single
actions which may be realized by mechanical or implementation. Even assuming that the require-
other means on the part of other (possibly non- ments have not changed during development,
software) participants in the integrated system. embedded systems are sufficiently customized

.Most of the system engineering process is efforts so as to guarantee that the first implemen-
the definition of the states. the signal thresholds, tation will not be the product that the
and rhe actions caused by state changes. Since user/customer really wanted, However, he may
the embedded software is integrated with special- not realize this until he sees at least one version
ized hardware, there is a strong interdependency that he doesn't like.
between the hardware and software subsystems. These problems summarize to the following
Smail changes in the hardware configuration can goal: Reduce the incremental cost per implemen-
potentiaily cause major changes in software. In tation. This may be done by speeding up he
addition. the software may need to be developed availability of the first implementation. thereby
in the absence of a hardware implementation-- freeing up resources for reimplementations. or by
evolving only against the hardware specification.

178

N~W u'r r rrr-J-----L- -

.°,providing facilities which reduce substantially the looking at automated transformation, these are
second and subsequent implementations. discussed in both Lehman's and Cheatham's

papers.
3.0 Alternatives Being Researched A fundamental element of both approaches

Consider the realm of software engineering is the existence not only of stepwise--refined sys-
research to be broken into two main camps: (1) tem versions, but also the availability of an expli-
those pursuing the development of tools and citly stated transformation mechanism which
methods which are predicated on the Boehm pro- relates consecutive versions. The most attractive
cess view as a fundamental constraint, and (2) features of this approach are the verifiability and
which intend to provide software engineering maintenance implications. L,?.

environments via large departures from the tradi- As Lehman points out: "If the source and
tional process view. The latter group's object models of this transformation are both for- "
approaches may be termed "radical innovations". mally described and if a verifed mechanical

First. we assert that the radical innovation transformation mechanism is used. then the pre-
approaches offer the promise of massive software cise correspondence between the representations
engineering improvements. At best, traditional- may be guaranteed. Alternatively, the results of
ists can offer incremental improvement. In fact. the transformation can be verified" (LEHM81)
history has shown that the introduction of (our emphasis added). With the increasing criti-
automated aids and methodologies without cality of embedded systems, the importance of a
changing the process framework has a very small feasible approach to verification is growing.
percentage impact on productivity or product Referring now to maintenance, both Leh-
quality. man and Cheatham point out that if a maintainer

Second, we have examples of how the has available to him the design sequence (corn-
introduction of radical innovation has been plete with transformations), automatic incremen- -

• exceedingly successful in several domains, most tal rederivation of code is enabled. Thus, the pro-
notably business file/data base processing. gram transformation approach's greatest potential

Three alternative approaches to radical is for reducing total life cycle costs rather than
innovation will be surveyed in this section. The de'elopment cost/time.
three research thrusts vary in their tactics insofar Cheatham offers an additional perspective
as changing the software development process which is appealing, that of domain specific nota-
view is concerned. These three are selected as tional extensions. Thus. program transformation
being the most promising radical innovations of offers the possibility of customized environ-
which we are aware. They are: ments, in our view, a powerful and desirable

o Program transformation: process attribute.
automation A chief disadvantage of program transfor-

o Functional languages mation is that observed by Cheatham himself:
o Domain specific functional commonality that it is not a mechanism for rapid prototyping

(at least currently). The elapsed time to seeing
" 3.1 Program Transformation: Process Automa- executable program behavior must be made as

short as possible to allow time for redevelopment
of the product within the development window.The two research efforts described here are

led by Cheatham (CHEASI) at Harvard and Leh- Finally, both transformation frameworks
man 'LEHMS I) at the Imperial College of Sci- support the assembly line development of code
ence and Technology, London. Both approaches (reusable software), but the research work itself
are based on providing transformations between is process-oriented: functional commonality is
consecutive representations of a program. Leh- left as a domain-specific problem. Cheatham and
man commences at a more fundamental level of Lehman are planting the seeds for a long-range
questioning Boehm's waterfall view. deriving an software solution. However, unless the func-
alternative process view. and developing the idea tional commonality aspect is a complimentary
or verifiable mechanized translation. Cheatham research effort, the !ransformation frameworks
derives his approach in a more bottom-up solve only part of the problem.
fashion. but arrives as a similar concept of pro-
tram transformation. Other researchers are also 3.2 Functional Languages

179

----. 7

A second radical innovation is proposed by base and file management systems. In these sys-
John Backus (BACK8l). Backus argues that tems, the file access paradigm is a user-selected
much of the software problem is created by the parameter. The user may define his file and data
basic architecture of general purpose computers base structures and rely on the management sys-
and their languages. A fundamental program- tem to supply the majority of the procedural file .
ming approach offers powerful program-forming access. In the 70s up to the present, work has
operations and 'supports exploitation of parallel been done on introducing yet another level of
processors. programming abstraction, that of coding-by-form

As with program transformation, a chief or automatic programming. Procedural level pro-
-advantage of functional programming is gramming is virtually eliminated for a large class

verification. The program forming operations of applications.
allow general algebra theorems to be applied, The key factor to the success of this
enabling a long-term goal program proving, approach is the identification and exploitation of

Much of Backus' work deals with the reia- functional commonality within a domain-file pro-
tionship between execution architecture and the cessing. Very different results would have been
software, and how the software may be struc- experienced if the domain had been identified
rured so as to exploit advances made possible by differently. Consider, for example, if the domain
VLSI. In some ways. Backus' work is more radi- had been constrained to "payroll processing".cal than Cheatham and Lehman because it Certainly, the constructs at the automatic pro-
presupposes a change in implementation gramming level would be much different. They
medium. Backus is however, dealing with the would probably be more powerful in the sense
limited spectrum of code development and exe- that they could be much more specialized, how-
cution. rather than with the entire life cycle. The ever, they would be usable in a very narrow
program forming operations are very powerful. niche of applications.
The context contributes to the use of reusable Reusability in embedded systems has, to
code. It also contributes to rapid implementation date, followed much the same course as the ima-
and re-implementation. once a minimum set of ginary parallel scenario described above. Because
elementary building blocks is available on which the software groups are typically appended to the
to io program forming. system product group, they are usually very

Although functional programming provides domain specific. So, the software groups are .. -

a means for supporting domain-specific functional attempting to identify and exploit commonality
commonality (building blocks), it leaves the within a very narrow domain niche, such as auto-
non-trivial problem of identifying and developing pilots (common parts are control laws) and sonar
the elementary functions, processing (common parts are algorithms). The

likelihood of reusing a sonar algorithm in an
33 Domain-Specific Functional Commonality autopilot is very low.

As mentioned in Sections 3.1 and 3.2. a Because of this parochial view of domain, .

necessary component for both the program the concept of reusability, although being very
transformation and functional programming attractive, has achieved little success. It is our
approaches is the availability of acceptable ele- assertain that the possibility exists for exploiting
mentary functional building blocks. It is our commonality increase substantially if one
assertion that these building blocks are to a large broadens the domain carefully.
degree domain-specific. A crucial question is: Second. we assert that a rule-based process-
What is the domain? ing approach is only one possible generalized pro-

An example will illustrate this. Exploitation gram construct applicable to control-driven svs-
, f functional commonality has been done very teins. It is the 2oal of our research to determine
well in the business data processing community. if a rule-based processing model is one acceptable
This occurred as early as the 1960s. with the concept. Corallaries to this are: If a rule-based
introduction of general-purpose file-accessing processing view is acceptable, what applications
packages. These packages are differentiated are in the control-driven systems domain? If the
based on the file-access paradigm (sequential, rule-based processing %iew is not feasible. what
direct, indexed. etc.). In the late 60s and early are some alternatives? What are the variations in
70s. commonality was again exploited in the the rule-processing model to allow adaption to
introduction at a higher level of abstraction, data specihc applications

180

~~~~~~~. .. . . . ........ ", .. .. -- • '"2 7. . '-.. ". .. ........ ..-'."--..-..-.. -'. .-. ,



.- I V

These are the questions being addressed in embedded system. The rules may be organized
our research. Details will be introduced in Sec- into rule sets or may be a single monolithic set.
tion 4 to the extent that they are known today. The selected organization will have performance
We emphasize two facets of this effort: implications.

The "State Data" is the mechanism of corn-
(1) In the absence of the availability of the munications between the expert system and the

more ambitious frameworks, offered by remaining system software or hardware. Exam-
Lehman. Cheatham, and Backus (among pies of data which might be placed in the state
others), having a domain-specific processing data space is a command for a particular sensor
construct can be a tremendous aid to prac- reading. The sensor. in turn, would use the state
ticing software engineers, data space to return its value.

(2) In combination with the program transfor- Ideally, the system engineer would be
mation and functional programming required to input:
approaches, having defined elementary o An organized rule base
building blocks will enable rapid insertion o Selection of rule processing
of these powerful techniques into general components
use. o Structure of the state data space

4.0 Functional Commonality--Rule- Based Pro- o Remainder of the hardware/software
cessing system

This section discusses the appropriateness A knowledgeable user could implement
of represnting the behavior of typical embedded, mission-specific heuristics for the rule retrieval
real-time software systems as rules, what this and/or rule execution components. The develop-
implies for the software structure and for the ment system should be knowledge-based in the
development process. and a sampling of specific sense that it knows the software architecture con-
domains for which this problem view may be cepts and can recognize acceptable and unaccept-
appropriate. able user-specified configurations. More . -

Notice that the acceptability of rules as a advanced environments could help the user
* . model for functional behavior is not the only optimize his implementation.

issue involved with this concept. There are more
substantial issues surrounding real-time execution -1.2 Implications for the Software Process
feasibility. These research issues will be touched Assume for a moment the following
on in Section 5. scenario, The software engineer has available to

him the facilities to load a ruleset, a collection of
4.1 Rule-Based Software Architecture control (rule-processing) modules which can be

The central idea is that one possibility for mated with the ruleset, and suitable test
functional commonality is a software architecture harnesses for evaluating the software's behavior.
such as that shown in Figure 4-1. Additionally, assume that a mechanism is pro-

The common parts are those in the "Gen- vided to download the rules from the develop-

eral Rule Processor" box. In reality, one may ment computer to the target. What the user has
desire a selection of components to serve as the at this point is not just a rapid prototyping
processes for this function. The "Rule Retrieval" environment, but rapid implementation. Havingcomponent accesses the rule base according to access to a low-cost, low-effort implementation £some strategy for retrieving rules to be con- could radically change the software development

proces strteg sustnial retrucen thee amountan-
sidered for execution. It is this component which process and substantially reduce the amount and
offers the most potential for performance tuning, cost ot post-installation maintenance, The con-
by introducing smarter heuristics for rule base cept is that sufficient uncertainty exists in the
accessing, expectations for a system to virtually eliminate

the possibility that the first implementation will
The "Rule Execution" component evaluates be satisfactory. Thus, the development processthe rules. This may involve changes to the global becomes one of creating a sequence of alternative

state data, require other rules to be invoked. etc. implementations, evaluating the individual imple-
The "Rule Base" is the organized collection mentations. and eventually arriving at one which

of rules which govern the behavior of the is iudged to be acceptable.

181

. . .. • " , . -. , . . . . .. .; _ ,~~~. - : .. .. . . ... .... . .*. * *~ , ... . . . . . . . . . . . .. .. _ ._, -.,,- .,,



The ability for the Al community to A prototypical application of this class is
achieve this iterative programming approach is HASP and its successors at Stanford University
based primarily on the functional programming and elsewhere. These systems implemented
nature of LISP. Adding generally usable func- sonar classification (NI178). Additional work has
tions to LISP has the effect of extending the occurred elsewhere in the embedded systems Z.
language to more and more abstract levels. Gen- community (EVER84). (GRIE84).
eralizing the control processing into rule evalua- Currently, we are building expert systems
tion is one of the outgrowths of this trend. This selected from two application classes: an embed-
incremental nature of LISP allows reimplementa- ded controller and a classification/diagnosis
tion without a complete rework. By replacing expert. The diagnosis expert is similar to that
selected functional building blocks, one can developed by Schlumberger for oil well log
obtain different functional behavior or perfor- analysis (DAVI1). Our intent is to have a high
mance levels. level of interaction between the application and

It is this concept of facilitating rapid imple- technology efforts, that is, the SOA technology
mentations that should be borrowed from Al. will be advanced in areas defined as high priority
The direct effect is that we can increase substan- by our applications development. In turn.
tially the reuse of common parts and substantially improvements in the application implementations
decrease the level of effort required to rework, are fueled by the new components supplied from
whether during the initial development or after the technology efforts.
installation.

5.0 Research Directions
4.3 Supporting Evidence It is our intention to capitalize upon exist-

The example set of expert systems imple- ing and completed research insofar as is possible.
mented to date is populated primarily with "con- That is, we expect our research to be performed
sultant" type systems. These systems assume the primarily in the areas of:
existence of a human user who will draw on the o Problem specific techniques
support of the expert system for decision making o Expert system interfaces
support. In addition, most of contemporary o Real-time. embedded issues.
expert systems are "load-and-go" processing.
Data is introduced to the system at the beginning Elaboration of what is meant by each of
of the run and the expert system processes until these issues is discussed in Section 5.2.
a solution is reached. Few existing systems have This means that we are intending to
the ability for an external entity, such as a sen- adopt/build on artificial intelligence and software
sor. to interrupt the processing with new data. methods research in the following topic areas:

Expert systems have been applied success- Knowledge representation, Al software architec-
fully to problems which are functionally within ture, Natural language. and Al language theory.
the control-driven domain (See 4.4). These have We intend to limit our work in these areas
been sufficiently successful to warrant further to that needed to customize approaches to our
investigation. The example systems are particu- selected domains and/or to achieve our system
larly useful in establishing the requirements for performance goals. We do expect to contribute
the development environment, and the process- substantially to the state of the art in several of
ing heuristics, for a baseline description of the these areas: the work will be requirements, rather
interface between an expert system and the than theory, driven.
remainder of the system. and to suggest issues of
downloading to .in embedded target. A direct consequence of this strategy is that

we intend to utilize as a starting point an existing
In addition, some work has been done on expert system engineering environment. The Co-.

evaluating the use of finite state machine and lowing section describes our analysis and selec-
frames for implementing embedded systems tion.
(GOLD78). (RANG80), (DESA78). There is
sufficient similarity between these concepts to 5.1 Expert System Engineering Environment
-upport in assertain ,that a rule-processing frame-
work is worth considering. The ideal expert system engineering

environment includes a software architecture and ..-

4.4 Application Domains tools to support building application systems

18r

~~182 "

i2-I

....................... . - " . " " "o'-°" """" ""•°""°""• " """ -' ._ .2.a~_ ... _.



constructed in compliance with this software Hempstead group (JACO83). EXPRESS offered
architecture. A software architecture is the and added possibility of allowing a LISP-
knowledge representation and corresponding con- PROLOG tradeoff in that EXPRESS as a

-. trol processing. PROLOG-based ESEE.

One or more knowledge representations are Since our experimentation began. we have
available in commonly available expert system evaluated the documentation on several other
engineering environments (ESEEs). The two commercially available ESEEs. We have not
most common are rules and frames. As argued added them to our experimentation plan. The
in Section 4, rules are the most popular candidate primary reason is that most ESEEs are targeted to -,-"
for representing embedded real-time systems. the consultation domain of expert systems and

The availability of rules as a knowledge represen- are not sufficiently flexible to allow their use in
ration is not an overly constraining requirement. our problem areas of interest. A secondary rea-

An ESEE may supply one or more process- son is the availability of source code to suoport
"-' modifications.•'"
ing components which operate on a given rule
base. An ideal ESEE contains more than one A final note on our discussion of generally

" control processor, so that an application builder available ESEEs is that we do not expect to find
may experiment with different control processors an ESEE which we can use in our applications
without substantially changing his rule base. In without substantial modification and supplemen-
addition, an ideal ESEE allows the user to supply ration. This will become clear as we present our
his own application needs (particularly perfor- research plan. However, it is highly desirable for
mance). us to be able to utilize an existing operational

Most expert systems built to date are con- ESEE as a prototype.
sultant systems. That is, their purpose is to . esn5.2 Research Issues and Plan .
interact with users in the solving of a problem.
Embedded. real-time systems are typically not Our research objectives are addressing two
consultative. On the contrary, the ideal ESEE basic questions:
would support facilities such as the ability to pro- o Is it reasonable to represent
cess signal interrupts in preference to a heavy a significant portion of
emphasis on the human interface to 'he applica- applications within our problem
tion expert system. (Notice this is not saying domain as rules for possibly
that the user interface to the ESEE is unimpor- rules combined with an additional
tant. knowledge representation)?

Our initial starting point for a set of ESEEs
were the eight surveyed by Hayes-Roth and oth- o What is the architecture
ers iHAYE83). Our first cut was done via study (hardware and software) required as a
(no experimentation) of the analysis in Hayes- vehicle for this approach to meet
Roth and of cited documentation. Our leading the system level performance
candidates at that point were: AGE from Stanford requirements?
University (AIELSO). HEARSAY-Ill, and OPS-5
(FORGS1). During late 1983 and through 19c4, work

on the first question was undertaken. OPS5 was
AGE was (and is) particularly attractive obtained from CMU and installed on the central

because (1) the concept of AGE is to construct Multics facility the AGE system required
an ESEE via commonly-used building blocks rehosting from a DEC-10 to a VAX. This was
including the possibility of user-provided ones). accomplished by February. 1984.

(2) it supports several control processing stra-
tegues, (3) t supports the concepts of "event" and Prototyping of a selected ":ypical" embed-
expectation" and (4) it allows the user to invoke jed controller was also begun in 1984. Early

procedures (written in Interlisp). This last capa- results with OPS5 were disappointing in terms of
bility allows us to build specialized interfaces to its appropriateness for use in our environment.
the user and other systems such as simulation. Early results with AGE are much more encourag-

W drn tn ox in i ing, despite the fact that the system itself has -". "
""-We determined then. to experiment with bugs and response time problems. The reasons

OPSS. AGE, and a third system. EXPRESS, for the encouragement are: AGE's provisions for- which had been developed by Honeywell's Hemel event and expectation driven framework- the

183



- -- .- • ° r r r

ability to alter control strategies without redoing (4) (BOEH76) B. Boehm, "Software Engineer-
the rule base, the high level (abstract) nature of ing," IEEE Transactions on Software
the user interface, and the component approach Engineering, December 1976.
to the system's construction. Work is continuing (5) (CHEA81) T. Cheatham, G. Holloway, and
on a prototype controller using AGE. J. Townley, "Program Refinement by
real-time use of an expert system. These issues

include: (6) (CHOW78) T.S. Chow, "Testing Software
Designs Modeled by Finite State Machines,
"IEEE Transactions on Software Engineer-the execution environment, ing, VOL SE-4 No. 3, May 1978, pp. 178-

including the issues of target 187.language.
(7) (DAVI81) R. Davis, H. Austin, 1. Carlbom,

o How to obtain real-time B. Frawley, P. Pruchnik, R. Schneiderman,
execution performance, particularly J>A> Gilreath, "The Dipmeter-Advisor:
through reimplementation of the Interpretation of Geological Signals,
rule selection and execution "Proceedings of IJCAI-81, pp. 846-849.
components. (8) (DESA78) R.J. DeSanto, "Using Finite-

State and Structured Design Techniques for
6.0 Conclusion Embedded Software Design," NAECON 78,

The success of reusable software process May 1978. Dayton, OH, pp. 236-241.
views is dependent on the appropriate selection (9) (EVER84) D.C. Evers, D.M. Smith. C.J.
of common functional parts. Our research deals Staros, "Interfacing an Intelligent Decision- e
with this aspect of reusability. One candidate Maker to a Real-time Control System, SPIE
part perspective is to separate knowledge and Proceedings. Vol. 485, May, 1984.
control: a view used in many Al systems. The (10) (FORG81) C.L. Forgy, "OPS-5 User's
suitability of this architecture for embedded sys- Manual," Dept. of Computer Science
tems developers is contingent upon achieving Carnegie-Mellon University. Report CMU-
adequate performance. This is the thrust of CS-81-135, July 1981.
Honeywell's current research program. (11) (GOLD78) J. Goldberg, Hierarchical Sys- "'-

tem Development. SRI Project 4403-22 SRI
BIBLIOGRAPHY International, Menlo Park, CA Jun. 1978.

(12) (GRIE84) J.H. Griesmer, et al.,
(I) (AIEL80) N. Aiello, C. Bock, H.P. Nii, and "YES/MVS: A Continuous Real-Time

W.C. White, "The Joy of AGE-ing: An Expert System," AAAI Proceedings, August
Introduction to AGE-I System," Heuristic 1984.
Programming Project, Computer Science
Dept., Stanford University. Stanford. Cali- (13) (HAYE83) F. Hayes-Roth, D. Waterman,
fornia, August 1980. and D. Lenat. Building Expert Systems.

(2) (BACK8I) J. Backus, "Is Computer Science Addison-Wesley. 1983.
Based on the Wrong Fundamental Concept (14) (JACO83) P. Jacobs "A Review of Expert
of •Program*?, An Extended Concept", in Systems or Rules Brittania." Honeywell "th --
Algorithmic Languages, deBakker and Int'l Conference on Snftware Engineering,
VanVliet (eds). North-Holland, 1981. Apri!, 1983.

- (3) (BACK82) J. Backus, "Function-Level (15) (LEHM81) M.M. Lehman, "Programming
Computing". IEEE Spectrum, August 1982. Productivity - A Life Cycle concept,
pp 22-27. Proceedings IEEE Compcon, Fall. 1981.

4

184

-. 8 - ..



- . : b".
"

" RESUME

NANCY M. GIDDINGS

SECTION CHIEF
HONEYWELL SYSTEMS AND RESEARCH CENTER

Research Expertise
Software Engineering
Artificial Intelligence

Education

All but dissertation PhD, Computer Science, Iowa State University,
1974
MS, Computer Science, Iowa State University, 1973
BS, Mathematics. University of North Dakota, 1971, Phi Beta Kappa

Experience
Ms. Giddings is currently the Research Section Chief of the Software Technology Section at

S&RC. The section consists of 10-15 engineer/scientists, most of whom have advanced degrees in
Computer Science. The Software Technology section's two long term research topic areas are applied
artificial intelligence and Ada target execution environments (run-time and compiling systems). The
mid-term research is in traditional Ada environments, particularly testing/V&V. The short term efforts
are directed at filling specific Honeywell tool/methodology needs, such as a knowledge-based text edi- "
ior.

The Al long-term thrust is particularized to embedded, real-time expert systems. Research topics
are software architecture, real-time performance, and development environments. The target environ- -.
ments thrust is developing a distributed Ada compiling and run-time system, as well as a multi-targeted
Ada software/microcode compiler.

Prior to becoming Section Chief in May, 1984, Ms. Giddings was the project lead on the Al thrust
and participated on the near and mid-term efforts. She was the project leader of an 1983 IR&D project

to install and experiment with an Al. LISP-oriented toolset. In addition, she won a 1983 Initiatives
-grant to study and experiment with the feasibility of applying knowledge-based techniques to software
development environments.

She managed a S560K software development program over 18 months which ended successfully
in November 1982. This was project to apply software simulation to test program set development in-
ATE. She has participated technically on secure computing and Ada projects.

Ms. Giddings has managed or helped manage the following proposals:

VHSIC Phase 2 study, VHSIC Architectures for . Military Computer Family Operating System
iMCFOS). Secure Data Base Management System, and LogLisp Programming System. In addition, she
prepared the 1983 IR&D brochure on software.

Prior !,) joining Honeywell, Ms. Giddings was an assistant professor at the University of Wiscon-
-,in. River Falls: a software project manager at the North Dakota Employment Security Bureau, and "he
manager of the data processing section at the North Dakota State Highway Department.. " -"

r

185 .- ,

................................................................*., *.



1, ..

Publications
' (1) "A Rule-Based Software Design Evaluator," with T. Colburn, to be published in the Proceedings

of ACM 84, October 1984. San Francisco, CA.
,. (2) "Software Methods Meet Al." Proceedings 7th Honeywell International Conference on Software

Engineering, Minneapolis. MN, May 1984.
"( 3) "Quantifying Software Designs," with J. Beane and J. Silverman, Proceedings of 7th International

Software Engineering Conference, Orlando, FL, March 1984.
(4) "An Approach to Design-for-Maintenance," with J. Silverman, J. Beane, IEEE Software Mainte-

nance Workshop, Monterey, CA, December 1983.
(5) "The Software Problem," Scientific Honeyweller. June 1983.
(6) "A Software Engineering Experiment: Using a Component Interconnection Language to Capture

the Software Structure of a Flight Control System." with J. Beane. J. Silverman, Honeywell S&RC
Technical Report, April 1983.

(7) "A Component Interconnection Language for Evaluating Software Design Quality," with J. Silver-
man, J. Beane. Honeywell S&RC Technical Report, March 1983.

(8) "The Maintenance and Design Implications of Viewing the Software Structure as an Interconnec-
tion of Components." with J. Silverman, J. Beane. Honeywell S&RC Technical Report, February -.

1983.
(9) "Software Engineering Environments," with J. Silverman, Honey Report. 1981. t

(10) Department of Labor Data Base Study, North Dakota Employment Security Bureau, 1978.
Volumes 1-5.

(11) "The Automation of the Computer Field," Report to the Director of the Department of Accounts
and Purchases in North Dakota, 1976.

(12) "An Algebraic Interpretation of the Halting Problem." Master's Paper. Iowa State University.1973." .

Professional Activities

Phi Beta Kappa
Outstanding Young Women of America - 1976. 1977. 1978
Alpha Lamba Delta. freshman womens' honorary
President's List and Dean's List, University of North Dakota all
semesters

r

186

I



V.7

WWI

cr0

G") '
Q'3137



arti

b. 
I.

mam

* 0w

" 

dO 
C

I. °  

I.-,.. .- . • . . -o -. .. .-. . . . .i _- -.. .- . . ... i-



L :.
."  .i ., , ...- TI .T

I ,, .. _ -
U- ' -* i z%

r~~A -,0(

e ift

"4'

40

-, Ob 0i-

. . . . . . .

/ a fi -.

I I

!0



p 6

r. INfr.v

-- L * f.,,

?Aa!Aopme govrf5 Or. aski 9 d tp~s.

o190.-: 

:i
.. 

:A-

.4
!C [90



A f. 0

4~b' ~ aaI J Ja5AAD

* ~. vO)u~flINW~ovr~ rvv~ec191V



allo'qc. rvo'p1 'i zr :ire SeqfUc(

one ~

ALL

~~ C~t &fl £CCP 4192~~e~ c ~ev



% .-. a%. . . .

a, r , ,e 1 ,

"'" 
'i",'a

*,,,= 'Va. , , ::

a.

193.4'..

o 

*.

- -
- L°.1or*oqf..,. 4 ore°-v o -I. -em he.n*1



VARIATIONS OF A REUSABLE SOFTWARE COMPONENT

Dr. J. Kaye Grau

Harris Corporation

Software is constantly being reused. jewelry and as a musical instrument require
However, creative reuse of a software com- the application of the spoon for uses that it
ponent developed previously for use in was not originally invented. Imagine that
another system to perform a context- you have been given an assignment to use a
dependent function in a very specific and spoon in a new and creative fashion. You
potentially highly-coupled environment is really have two choices: 1) use the spoon
certainly a challenge to any software without physically changing it for a new func-
engineer. As a result, research into methods tion or in a new environment, or 2) physi-
and tools to improve the reusability of cally modify it by bending or melting or
software components and thereby the produc- whatever to create a new object made from
tivitv of the software engineer has potentially the spoon. Needless to say, creative reusabil-
high pay-offs. In this paper, a survey of ity is the only form of reusability that will be
current literature is presented with addressed in this paper.
classification of reusable components into two
categories: opaque and transparent. Then. A survey of current literature on
some of the possible variations of a tran- creative software reusability results in a
sparent component are examined. Finally, a classification of reusable components into two
position is reached that automatic support for categories:
variation generation from a transparent corn- (I) opaque components
ponent is required to make software reuse 2) transparent components
practical. ()tasaetcmoet

Opaque components are components
Peter Wegner (WEG 84) recently which one cannot see into and therefore can-

observed that there are four different kinds not be modified easily. We have all experi-
of component reusability that contribute to enced opaque software; commercial operating
software productivity. He said that they may systems, commercial compilers, and most
be reused commercial software which is sold in object

o in a variety of applications form or in an encrypted form fall in this
category. These components have well

o in successive versions defined interfaces and an anticipated result.
of a given program But how many times are the results exactly

what was expected? We have all written
o whenever programs containing work-arounds for compiler bugs and operat-

the component are executed ing system bugs. So reusing an opaque com-
ponent in a creative fashirn requires 'trick-

o by being repeatedly called ing" it. or by using a preproce--',-r or a post-
during program execution processor.

One example of opaque component reu-
The latter three are the common forms sability can be observed in Unix. Kernighan.

of reusability- for an analogy, compare in a recent article on reusability in Unix. I.
Wegner's list with the reuse of a spoon. stated: "...this trivial example is typical of
Most everyone over the age of one knows Unix use: two programs are connected tran-
how to use a spoon repeatedly to bring food siently to do a job that is worth mechanizing
to their mouth during one meal; to use a but not worth writing a special program
spoon at every meal to help with eating; and for.... people routinely use the capabilities of
to use a soup spoon to eat soup and a tea- the shell to cover up defects in existing pro-
spoon to eat ice cream; however, the really grams or to combine them into new ones; it
creative uses of spoons such as for making is much easier than writing a new program

195

II

. . ... ....... " . .. .- "' '--.- -. .. -.. -- : < .'.,_, .'_L * .,:. .-.- '' € ._* - -'"_*. . . ",. .". -- "'.-.":':'..-,-



from scratch." (KER 84) very concept of 'reusability' must be defined
more rigorously, in terms of the dependence

There are obvious problems with trying of the component on enclosing or higher
to reuse a software component in an environ- level environments. It should be '.ssible to
ment or for a function for which it was not develop metrics for the measurement of such
originally designed. Standish recently com- component dependence, enabling
mented: "...it is certainly the case that some quantification of potential reusability." (LIT
software components are too specialized and 84)
concrete to be reusable." (STA 84) Cheat-
ham agrees: "It is our belief that, even with Transparent components, i.e., com-
the relatively advanced modularization facili- ponents whose internals may be easily viewed
ties provided by Ada, the extensive reuse of and thus potentially modified, may be used in
concrete Ada programs is unlikely. The the same fashion as an opaque component.
problem is that programs in any concrete Additionally, they may be modified, used as
high-level programming languages are the patterns for composition of new yet similar
result of mapping from some conceptual or components, and used as teaching aids.
abstract specification of what is to be accom- P a vnd b
plished into very specific data representations Pograms he mold anspare com-
and algorithms which provide an efficient developed to help mold transparent cor-
means for accomplishing the task at hand." ponents into usable software:
(CHE 84) o application generators with fourth

With opaque type reusable components, generation languages which link

some of the obvious technical problems together and customize components

which require resolution are: within a well-defined application
area

o As software development proceeds
in a top-down manner, how can o general purpose formal specification
potentially useful off-the-shelf transformation/automatic code
reusable components be recognized? generation

Horowitz and Munson in "An Expan-
How do the practical aspects (i.e.. sive View of Reusable Software" present an
cost and schedule) of "make-or-buy" effective comparison of the currently avail-
decision influence reusability? able programs which support the molding of
What is the cost trade-off between transparent reusable components into func-
a one-time development cost vs. tional software systems. (HOR 84)
life-cycle duplicate copy costs?

Transparent components are useful
o What technical factors need to be teaching mechanisms. Standish (STA 84)

considered in a 'make-or-buy" observes that "the successful practice of
decision (e.g., performance, software reuse appears to help considerably in
influence on rest of system, the teaching of certain kinds of computer sci-
design, potential execution ence courses....One view of the teaching of
side-effects) ? computer science is that it involves identify-

ing and presenting useful abstractions--those
o How can the components be which, at best, will be intellectual tools ser-

coupled into the system correctly? viceable for a lifetime."

How can we be certain that the Whether the component is opaque or
freshly coupled component will transparent, the degree of reusability is
perform reliably in its new improved if higher levels of abstract descrip-
eromrelnit s tions are available. Matsumoto discussed the

relationship between reusable components I.,

Litvintchouk and Matsumoto have also and levels of abstraction including bothLitvntchuk nd Mtsumto ave lso requirements and design. (MAT 84) Test sets
recognized the need to study coupling: "The r

196

N, "'
-- - -- - - -- -*'.'=~''



and validation suites also increase the reusa- requirements of the system being con-
bility. Clear definition of the binding, inter- structed, the component with the proper
face, and/or coupling with the external quality could be selected from the variation
environment also adds to a component's reu- library.

sability. Variations of a component could also be

The creative reuse of a component, developed with different binding mechan-
either an opaque or a transparent component, isms. For example, a component variation
generally requires modification of a com- could have a task and entry binding, another d,
ponent itself, a modification of the way in variation a procedure binding, another varia-
which the component is used, or a tion a function binding, and another variation
modification of the environment in which it a mere begin block for incorporation in-line
is to execute. The remainder of this position in a program.
paper will focus on the potential
modifications of a transparent component to Another potential characteristic which
produce component variations. A component could result in another set of variations is
variation has the same functionality and capa- degree of parameterization. For example, the
bility of doing a job but goes about perform- size of a array can be passed as a parameter
ing the job in a different manner, e.g., faster, or it can be "hard-coded" within the com-
more reliably or more accurately. ponent. Variations of a component with

different parameter lists could be developed
Litvintchouk and Matsumoto recog- and stored in the component's variation

nized the potential of component variations: library.
"Components which have the same externally
viewed static semantic behavior but differ in The type of coupling of a component
various performance criteria can still be with its parental environment is another
grouped together in the component library, potential source for variations. For example, "-
In this case, a criterion for retrieval based a semaphore component can be written which
only on static semantic specification will either makes use of a shared semaphore or
retrieve from the library a range of possible uses an object oriented approach and encap-
subsystem configurations, all semantically sulates the semaphore within itself. Simi-
valid. Then, other techniques (possibly larly, a component variation could be
heuristic search) can be applied to these pos- developed which is intended to inherit data
sible configurations to find the one which is from its encapsulating parent while another
'optimal' according to the specified perfor- variation could be an independent component
mance criteria." kLIT 84) with no inheritance required. Yet another

potential variation is in the style of repeata-
An obvious variation is based on sizing bility of the component. One variation could

and timing. A frequent trade-off which must be nonreentrant while another be reentrant.
be made in designing software is between Similarly, one variation of a component could
making a program memory resident and fast be recursive while another variation could
versus smaller with many disk accesses and use iteration to accomplish the same task.
thus slower. Thus one variation of a com-
ponent could be a speedy, memory resident The interactive ability of a component
version. while another variation could be a may produce yet another type of variation. A
small version with disk accesses and overlays component can be designed to interact with a
built into it. user or to perform its task independently in a

background fashion with no user interaction.
Another potential form of variation is

based on quality factor variation. An For components which are based on
extremely reliable component variation, an decision tables, decision trees, or other
easily maintainable component variation and selection-intensive logic, the choices may be
a highly interoperable component variation as stored as data or hard-coded. The data-
well as other quality factor variations could driven variation is certainly more flexible
be developed and stored in a component's than the hard-coded version, but hard-coded
variation library. Depending on the quality versions may be faster and more reliable.

197

-**'.'.'..'*°.' ]



* • s, ..-... .- - . . ---- -l ; -- --

Finally, for purposes of this position tions identified above, second, third, and so
paper, the last variation to be identified is the forth orders of variations of components can
degree of specificity or generalization of the be created. For example, a memory-resident,
component. For example, if printing the reliable, task bound, highly parameterized,
sum of 2 and 2 was a requirement, a com- object oriented, recursive, interactive, data
ponent could be implemented as a single line: driven, generalized (ninth order) variation of

a component might be required to meet all
print "2 + 2 - 4" the system requirements. The problems of

storing, locating, identifying, retrieving,
However, it has limited potential f'or maintaining, and other logistic issues are

reusability. A more generalized variation of obvious.
this component could be developed which
would add any counting number to itself and An automated system which would pro-
return the result for printing. An even more vide the user with a specified version of a
generalized variation of this component could component could be accomplished in two
be developed which would add any two different ways. The most obvious automa-
integer numbers. The next level of generali- tion is a large database of component varia-
zation might be a component which would tions with tools which allow the user to select
handle any specified binary operation on any one or more variations, modify and merge
two parameters. More general than that them to create the needed variation and then
could be a component which could parse and store the newly created variation back into
interpret any general equation and evaluate it the database. The alternative automation
to produce the desired result. Therefore, scheme is certainly intriguing. A
each level of generalization/ specialization knowledge-based variation generator could be
can be a variation of a component since each developed which given a transparent com-
would accomplish the required task. ponent and a set of variation requirements

Now that many types of variations of a could automatically produce the needed vari-
sNglecomponnt ave een oaidentified, a ation of a component. The variation genera-single component have been identified. a toseigyeon toastehoo, %

tor, seemingly beyond today's technology,conclusion can be drawn that in general the has the potential of making component reu-
number of reusable components and their sability practical.
variations can quickly reach an astronomical
number. In addition to the first order varia-

BIBLIOGRAPHY

(I) (CHE 84) Cheatham, T.E. "Reusability braic Specification", IEEE Transactions
Through Program Transformations", on Software Engineering, Volume SE-
IEEE Transactions on Software 10, Number 5 (September 1984), pp.
Engineering, Volume SE-10, Number 5 544-551.
(September 1984), pp. 589-594. v.np (MAT 84) Matsumoto. Y. "Some

(2) (HOR 84) Horowitz, E., and Munson. Experience in Promoting Reusable
J.B. "An Expansive View of Reusable Software: presentation in Higher
Software", IEEE Transactions on Abstract Levels". IEEE Transactions on
Software Engineering, Volume SE-10, Software Engineering, Volume SE-10.
Number 5 (September 1984), pp. 477. Number 5 (September 1984). pp. 502-
487. 512.

(3) (KER 84) Kernighan, B.W. "The (5) (STA 84) Standish, T.A. "An Essay on
UNIX System and Software Reusabil- Software Reuse", IEEE Transactions on
ity". IEEE Transaction on Software Software Engineering, Volume SE-10.
Engineering, Volume SE-IO. Number 5 Number 5 (September 1984). pp. 494-

(September 1984). pp. 513-518.

(4) (LIT 84) Litvintchouk, S.D.. and (6) (WEG 84) Wegner, Peter "Capital
Matsumoto, A.S. "Design of Ada Sys- Intensive Software Technology". IEEE

Matsmot, A.. "esig ofAda ys-Software. Volume 1. Number 3 (Julytems Yielding Reusable Components: 1984). pp.N73l5.
An Approach Using Structured Alge-

198

. . "............... ......... "



RESUME

DR. J. KAYE GRAU

Dr. Grau is scheduled to enter the employment of Software Productivity Solutions, Inc. in
February 1985, prior to the Workshop on Reusable Components of Application Software.

HARRIS CORPORATION, Government Satellite Communications Division, Melbourne
FL.

Dr. Grau is currently on staff to the Naval Extremely High Frequency Satellite Program
(NESP), responsible for interface validation. The effort involves designing a complex real-time
simulator that will exercise 23 system interfaces. She previously developed a complete set of 10
NESP software standards, covering the entire life cycle. The approach included the use of an
Ada PDL for development, even though the implementation could not be in Ada.

Dr. Grau has been the focal point for Ada methodology in the corporation, transferring
the technology to numerous internal and DoD developments. She was responsible for establish-
ing and executing a sector-wide Ada training program. She has provided consulting, evalua-
tions and training in Ada for numerous programs and proposals. She provided an Ada technol-
ogy assessment for NASA for application on the space station. Dr. Grau was awarded an
engineering award for her contributions in Ada technology. She is editor of Ada Letters, the
internationally recognized Ada publication.

Previously, Dr. Grau was Group Leader of Methodology, responsible for researching and
applying advanced software techniques and tools. She has provided software methodology sup-
port to several major software developments. Among the methodology products provided in
this capacity are the Software Development Plan, Software Design Standards and Conventions,
Computer Resource Plan, Software Documentation Standards, Coding Standards and project-
specific training.

She was a major contributor to the definition of Harris' Integrated Software Methodology
(ISOMET) and has been instrumental in the writing of a generic Computer Program Develop-
ment Plan (CPDP). She was the principal author of the Harris Ada Process Description
Language Guide and is currently active in the IEEE Ada as a PDL Working Group.

UNIVERSITY OF CENTRAL FLORIDA. Orlando, FL

Dr. Grau was Assistant Professor of Computer Science, teaching a wide range of depart-
ment courses including operating systems, structured programming and database design. In
addition to teaching, she was system manager of the Computer Science Department's VAX
laboratory and faculty advisor for the student chapter of the Association for Computing
Machinery. Her primary area of research was in software engineering and tools.

EDUCATION

UNIVERSITY OF MISSOURI-ROLLA. Rolla. MO
Ph.D Computer Science
M.S. Computer Science

CENTRAL MISSOURI STATE UNIVERSITY
B.S. Mathematics

199

...........................................



PUBLICATIONS/PRESENTATIONS '"'

(1) "Ada Design Language Concerns." Second Annual Conference on Ada Technology, 1984.
(2) "Ada-Based Design Methodologies," Session Chairman, AdaTEC Conference, June 1983.

(3) "The Use of an Ada PDL," AdaTEC Conference, February 1983.

(4) "Compilability of Ada PDL." AdaTec Conference, June 1982.
(5) Ada Process Description Language, Harris Corporation, May 1982.
(6) "Application and Comparison of Algorithms for the All Shortest Paths Problem," Ph.D

Dissertation, 1979.
(7) "Precise Interstop Distances Using a Digitizing Tablet," ORSA/TIMS Conference, 1976.
(8) "Minimizing Transportation Cost Using Computerized Routing," MEC/UMR Conference

on Energy, 1976.
(9) "An Analysis of Finite-Queue. Multiple-Server Facilities," ORSA/TIMS Conference, 1975.
(10) "An Analysis of a Network of Finite-Queue. Multiple-Server Facilities," Master's Thesis,

1973.

PROFESSPONAL ASSOCI4TIONS

Editor, Ada Letters
Association for Computing Machinery (SIGS0.-T SIGADA)
IEEE Computer Society

200

. a . - .......

. ' - a. . . .. . . . . . . '..



pM.. soMI
0

.9. 0 

u 1 .4.u 4

0 (a.

.0 0.
V0'0

4) 0 0

o so

@3- -0 S. > .3

.~ 0 u 0 -4 1)t

V U .. CL V

-4 I v 0 0 0 %-4

'-4~ -4 -44

-101



i in

-0 4) tn--

0 0 to
CL CL

,. -

-. o Sd o d
CJ E

to n 0

"- 3J 0 f"1 .01 ., U ( .,0 A 0 V -

'.oo

S.. -2

0°.S. --~

202-

V °V 'flo 0- " u. •



"a I - j, .. , _: I .... . . % . ... a- .. . . .. - j" , . . . g " . ': fb

2

:--..
ab 0:

so .r.L

ty3 0

0 -'.

= .0

u 0

ID "'N .4. ,4V

0-4 -"

.03.

n E, *4 -" -

IE " 0 s= .0 Q . "''

0 0 M 3 i
S0 10 C- .4 I= 0

3 - ) Ou ' 10 I= - ) 0 to40 0- .4 0 , •-"0 E " E U t '.

OX so~. 6-
Si13€ 00 0 ..

,o :::

0E

203

,-'. , , _ . -r a . 'V-...,-.,-. -,.. - *., , , - . , .-.. , ...- , ...- ... ,, ..... . *. ... . . . -.. . .... . . : .... :-:.:. ,,...



!_ ..

0

V to L

5.. .-- .0

00 u

5.. v

a ". V

0 0 1

"a *- 13 0

, 1 V

0 00> =

- -., .,4 ', "

D ",' ,3 a,,,630*0

,£. I,'*,

.$1 -IU ,o E -
1U 00 -

...~ 1 ., 04

0g. 0 0

i.: " "-- I:"

E,, O2 .

2E0 t-I

V I +3 S
ra C6 U 6

o v. *.. 2

.. ) s.. a

03 H3 0 0 5.
VE I' .a 0

00 I00 (300
im 0 3

204 6

.63. o -, -.- - _•., - - , o . . . . . ° o1 . - ... - .-.0.- - o o - - .- . ° o. • 4 •

, ,r..5, "',- "..-[.-,'' ..,,,' :,,",'',--.."""- """.. - N 0' - a ." "-- -"-". - ' "."-"-"-"-". "..".-" ''"."- " ' " -"''
,e,,r, - , , ,.., ,. .?, ._ ,. . 0... . . . . .. . . - . , ,.04 , . ..,-3 0,- ; -



e-X

'a 0

) 4) 43 
43- " 3a .

4) lu 4 to

5.. a) 0 0
0 S . , S.

E 3 10 43
..43 I 0 4)

S.,.

r7 E 0

0 205



iii i

0

0 a
4 .. > I

c0o 
I

v00 I

-4

0.0 I

"S. I
* 0

E M

206

AU4

• ° . ° . . . ° .

=,~. :.. ,.j...,., .... ,._,/_............................... ....................... **,._**' .*_



* 00

o -\

*. -. .:4-o22

la

"" l u- p.-

- '0

I~i . I

0

* 'ac

0207

' i'-4

-- *3 I-..:-".:. .--".,, .:..'- .'.,'.',...'. .',,.'.,. .p :; ) ....... ........ .. : '-".- .- "."- . ."."- '. :



.°°1

SOFTWARE VALIDATION OF SIGNAL PROCESSING
SYSTEMS AND ITS IMPACT ON REUSABILITY

Michael R. Miller
Hans L. Habereder

L.O. Keeler

Hughes Aircraft Company
Fullerton, CA 92634

Abstract

As computers and other digital processors become more powerful and cost-effective as compared to
other implementation alternatives, software development will continue to increase in importance in
all major new system developments. The reuse of application software has signOfcant potential in
terms of reducing cost and development time for mission critical applications. In considering the
potential use of reusable software components Jbr weapon systems, the functionality of the com-
ponent, and other factors such as reliability and maintainability should be investigated. These, as
well as other factors, underscore the necessity of a well conceived and executed Validation plan.
Validation of software components represents a critical part of the overall system validation prob-
lem and the use of automated tools in performing software validation will become increasingly
important.

The purpose of this paper is to describe an integrated design and test method used on signal pro--
cessing software developed at HUGHES, and to provide injbrmation on the relative cost savings
associated with the use of simulation during software development and the reuse of software com-
ponents. The unique difficulties encountered in the reuse of signal processing software will be
explained along with some techniques which have been used at HUGHES to overcome many of
these difficulties.

Characteristics of Signal Processing
Hardware and Software

Surveillance systems such as sonar or radar hardware and software to meet the large
systems require real-time processing of large throughput demands. The redundant and simplis-
amounts of input data by means of signal pro- tic characteristics of signal processing algorithms
cessing operations such as beamforming, digital are exploited through the use of parallel process-
filtering, fast fourier transforms, digital correla- ing and pipelines. Parallel processing is the use
tion. noise normalization, and thresholding. This of duplicate hardware to perform identical pro-
processing is highly computational and requires cessing on separate data paths simultaneously.
throughput rates which are typically two orders of Pipelining is a technique in which a sequence of
magnitude greater than general purpose applica- instructions is executed simultaneously in an
tions. assembly line manner.

Signal processing software encounters two --
Many signal processing algorithms are itera-Sgnlpoesgsftaencuertwmajor obstacles when considered for reuse. First,tive and/or perform identical processing on large the software is usable only on a specific hardware

amounts of data. The logical structure is simple, design and generally cannot be hosted on other
typically requiring only IF-THEN-ELSE, CALL. machines. Second, the software is usually
and DO-WHILE constructs. Data dependent designed for such a specific application that it is
branching probabilities are approximately 4 orders not useful anywhere else. To realize the capabili-
of magnitude smaller than those found in general ties of parallel or pipelined architecture the.
purpose programs. These characteristics o!' signal tisopalelrppeidachetue teagpogrims aree uhartie s siale software is tailored to very specific functions.
processing Through the use of table driven firmware,

209

-. .,. . . .... .



modular design and use of simulation in testing, eliminate errors as soon as they are generated
" the generalization and reliability of software can rather than allowing them to remain in the sys-

be increased to allow reuse without sacrificing the tern and waste further development efforts.
efficiency of many common signal processing Software validation testing (which typically con- r;.

functions. tributes to over 50% of signal processor software k,,)
development costs?10) is much simpler because

As a background for discussions that will most errors (particularly the big ones) have '
follow, a brief explanation will now be given already been corrected. Benefits continue after
about how typical signal processing hardware and delivery because the software contains less errors
software differs from general purpose hardware and has received fewer modifications and is
and software. The operational software of the therefore more reliable. The increased reliability . .
typical signal processor consists of firmware (or encourages reuse of the software.
microcode) and high order language (HOL) code A si a
which defines the flow and structure of the pro- A little testing during the design saves a lot
gram. The horizontal microcode primitives are of testing later on. Considerable reductions in ...-

routines which control the flow and manipulation development costs can be obtained by detecting .".-
of data through the pipeline. This is where the errors early. The cost of correcting software
redundant characteristics of signal processing errors increases rapidly with respect to the
algorithms are combined with the specialized development of a project. One source has deter-
pipelined hardware architecture to achieve high mined the following relationship of error correc-
throughput. The programming process is highly tion costs and project development. (2)
complicated and is slow and costly making the
reuse of microcode highly desirable. Each primi-
tive performs a simple function such as the Phase of Project Cost of Correcting
adding or multiplying of two buffers of data, and Development Software Errors
is controlled by a table of pointers and parame-
ters which indicate the desired processing and the o Design I Monetary Unit
location and size of the data to be processed. o Code 6.5 Monetary Units
This table driven feature of microcode increases o Test 15 Monetary Units
reusability by making the primitives more general o Release 67 Monetary Unitspurpose. 1

To show the importance of early error
The H-IOL code implements the simple con- detection this data will be used to generate a sim-

structs needed for signal processing applications pie example. Assume that there are 100 errors in
and contains the structure, control, and flow of a software system. Assume that at each phase of
the entire program. It calls the microcode primi- development we can increase the detection of
tives in the appropriate sequence to perform the
signal processing algorithms and supplies each remaining errors from 50% to 60%.

primitive with the table of parameters it needs.
The HOL code is much less complicated than the
microcode and is analogous to a high level 50% EFFICIENCY 60% EFFICIENCY
language which uses a software defined instruc- (COST) X (# ERRORS) (COST) X ( # ERRORS)
tion set. It facilitates the development of large
complex programs through structured design. Design 1 X 50 - 50.0 1 X 60 - 60

Hughes SP Software Validation Process Code 6.5 X 25 - 162.5 6.5 X 24 - 156
Test 15 X 13- 195.0 15 X 10- 150

Signal Processing software is developed at Release 67 X 12 - 804.0 67 X 6 - 402
HUGHES by integrating both the design and test
phases through the use of simulators (computer Total Cost - 1,211.5 Total Cost - 768.0
programs which model a software or hardware
design) at each level of development. With simu- 1211.5 -768.0
lators. designs can be tested from the top down. ..............- 0.37 -
Before the design proceeds to the next level it is 1211.5
tested to identify oversights, determine the feasi-
bility of uncertain design parameters and to
measure system performance. This helps

2'- .-

210 . .' '

s-



W. ~ j
5

.o. * , -

7"

This shows that an increase in error detec- the weapons system. During this level of design, ,,

tion ability of only 10% could result in a 37% the signal processing tasks are partitioned into
reduction in error correction costs! subtasks and the needed microcode primitives are

defined. The high level behavioral instruction
Early error detection and sound. reliable simulator as shown in Figure 1 performs a simu-

engineering are the primary motives for the use lated execution of the HOL code by calling the
of simulation in a software development metho- appropriate sequence of microcode primitives
dology which integrates the design and test which are each implemented using a high order ,. .

phases (Figure 1). At each level of design simu- programming language but perform arithmetic in
lators provide estimates of performance without the exact manner of the target machine.
requiring the design of lower levels. Sds

2 Imlemntin Sotwae InpecionSets of test data (known as "test vectors")

2 pcorresponding to the inputs and outputs of each
Course notes, IBM Systems Sciences functional block in the subsystem are generated

Institute. IBM Corporation 1981. by the functional simulator or are recorded from
I Randall W. Jensen and Charles C. Tonics, line scenarios. These test vectors provide the

Software Engineering, Prentice-Hall. input and expected output data used to test HOL
Englewood Cliffs, New Jersey 07632, code routines on the instruction simulator.
1979 pg. 331. These tests can be performed prior to integration

and prior to the development of the microcode
The functional simulator as shown in Figure primitives, however. some tradeoffs exist which

2. is the basic design tool for the systems forbid the complete isolation of the HOL code
engineer, providing him with rapid feedback on and microcode design processes. The High Level

the feasibility and efficiency of new or uncertain instruction simulator allows for the comparison
designs. Information regarding processor load- of different HOL code designs, provides more
ing, bus loading, throughput, memory loading, detailed loading and throughput estimates, and
ind memory utilization can be obtained. The supports debugging of HOL code by allowing the
simulator may include the capability to simulate tester to examine the simulated coefficient and
the environment in which the system is intended data memories during the simulation. This simu-
to operate, and thus verify that the system will be lator also used to develop test vectors for the

able to perform the function required by the cus- microcode routines. e.

tomer. Use of the functional simulator forces the
complete definition of each functional block and The microcode behavioral simulator is an
interface, and helps uncover costly oversights in essential element of the signal processing
the top level design. It allows for the testing of software design and test system. It is initially
the designs rather than the implementations by created during the architecture design of the sig- -

utilizing the simplicity and convenience of high nal processor hardware at the register transfer
order programming languages. Different algo- level (RTL), and leads to the gate level design.
rithms are analyzed and design tradeoffs are It models the complete detail of the architecture
determined quickly. Problems can be identified needed to execute microcode in a manner identi-

early and the designs perfected prior to their cal to the hardware itself. Every data path and its
costly implementation at more detailed design associated time delay is simulated along with the
levels. Instead of allowing an incomplete inter- contents of every register. It provides extremely
face or a bad algorithm to be implemented in effective debugging capabilities by allowing the
HOL code or microcode. many such errors can microprogrammer to inspect the contents of any
be detected and corrected soon after their origi- register during any given clock cycle of the simu-
nation. This saves money and improves the lated execution of the program. Additional
quality, clarity, maintainability, and reliability of features such as the flagging of registers whose
the code as it reduces the frequency of its contents changed from one clock to the next
modification. enhance the simulator's usefulness. _

The signal processing subsystem develop- The importance of the microcode simulator
ment encompasses the implementation of the in the validation process lies in its effectiveness
required signal processing functions in application in detecting errors. Microcode is highly complex
software (consisting of HOL code) and micro- because it requires timing .:ritical microcode pro- '-

code primitives which will be delivered to run in gramming of a pipelined data path. Every

211

..................................... ............. .. .. . '..,... . ... :!



7 77TITv

attempt is made to exploit characteristics of the correct and the quality of the lower level designs
specialized hardware which will result in greater improve because they are modified less. The
efficiency. The simultaneous execution of reduction of latent errors in the system prior to

different functions throughout the pipeline makes integration speeds up more costly validation and ,... '.
the microcode difficult to document and main- system testing, saving time and money. A simi- , .
tain, consequently modifications often become lar use of multi-level simulation is often used in
rewrites. The microcode simulator provides the the development of VLSI (Very Large Scale L
capability to perform testing on the primitives Integrated Circuit) and VHSIC (Very High Speed
during design so that bugs can be eliminated Integrated Circuit) hardware where redesign after
while the program is still fresh on the fabrication is prohibitively expensive.
programmer's mind. One important side benefit of simulation

Typical microcode primitives are small and during software development is its usefulness in
the functions they perform are kept simple so analyzing new algorithms and problems encoun-
that despite the complexity of microcode tered during validation and system testing. On
development, they can be tested thoroughly one HUGHES project where a fixed point signal
using the microcode simulator. Because of the processor was used, identical test data was run
low data dependent branching probabilities of sig- both on an instructional simulator and a floating
nal processing algorithms, the primitives rarely point functional simulator and then compared.
contain more than three branches hence all the This provided information about the effects of
possible logical paths and data extremes are the fixed point arithmetic on the performance of
readily testable. Test vectors generated during the algorithms. Data obtained during non-
higher level simulation may be used to verify the simulated environment testing can be analyzed
functionality of a primitive under test. This on the simulator to determine if a problem
comprehensive testing leads to highly reliable encountered during was due to a hardware mal-
components with error densities typically 4 times function, a software error, an algorithm or imple-
lower than general purpose HOL software where mentation insufficiency, or some factor in the
such techniques are not applied environment. New algorithms created to

improve system performance can be tested on the
Following the microcode simulation, the simulators against test vectors which incorporate

application code is integrated and validated by non-simulated environment data. Thresholds and , p-

executing it on the actual hardware and using test other design parameters can be adjusted for
vectors identical to those used to validate the optimal performance in the real environment.
HOL code on the instruction simulator. This
testing insures that the functional blocks interface Another benefit of the integrated design
correctly, the microcode is performing as and test method using simulators occurs in the
required, and the overall subsystem is exhibiting reuse of software. The high reliability of micro-
the prescribed input/output characteristics. After code primitives when tested on the microcode
these tests are completed the SP applications simulator coupled with their flexibility obtained
package is integrated with other subsystems and because they are table driven, makes them prime
the overall system is validated using system level candidates for reuse. Nearly all signal processing
test vectors. Finally, the weapons systems is applications require basic functions such as sub-
taken into its real environment for live testing, to traction or complex multiplication and many
measure performance, detect errors, and obtain applications perform other common functions
data for analysis and design improvements, such as spectral analysis, thresholding, and FIR

(finite impulse response) filtering. Because of
In summary then, Signal Processing the high cost of developing microcode, reuse

software is complex and is expensive because of becomes very desirable. A library of microcode
its specialization to hardware and the high levels primitives developed on one project can be used
of efficiency required. Simulators are effective for the next application. If new microcode primi-
debugging tools and allow the testing of high lev- tives are required they can be designed, tested
eis of design prior to their implementation at low and added to the library. Thirty-five percent of
levels. They support tne simultaneous develop- the microcode primitives used on a recent project
ment of applications software by many program- at HUGHES were designed and tested during a
mers when target hardware is unavailable or lim- previous project. Every one of these reused rou-
ited. Error detected earlier are less costly to tines has provided 100'In error free service, and ,.

212

--:.



none of them have incurred any error correcting 4. Complete Definition

costs. Documentation on each software module
I Designing for Reuse should include a functional definition which accu-

Experience at HUGHES with the reuse of rarely describes the function of the module to

signal processing software, particularly micro- someone unfamiliar with it. The definition

code, has resulted in the formulation of some should be self sufficient (not requiring inspection
,design principles which encourage reusability of the code), explain each element in the param-The first two principles have already been eter table, and should describe the module's

The irs tw pricipes ave lredy een behavior on all extremal values. An example ofexplained but will be listed for completeness. suhadou on is iven in Andix A.such documentation is given in Appendix A.
1. Table Driven Primitives

By making the microcode primitives param-
eter driven, they are more general purpose and Standardization and generalization of
can be used for a greater variety of applications, software interfaces encourages reuse of routines

2. Comprehensive Testing at the Module Level both within and between projects. Modules with
parameter driven input and output data

Through the use of a microcode simulator, specifications are more flexible allowing for their
highly reliable testing may be performed reducing use in multiple arrangements and applications.
maintenance and error correction costs of reused . e nc ccode. 6. Performance Records -.
*code.

3. Modularity Comprehensive records of the test vectors
Software modules which are small in size used during validation tests should be kept for

and perform a single simple function are more every software component, describing which
likely to be used again. Large numbers of small, functions were tested and how the tests were per-

single function routines can be arranged in many formed. Knowledge of a module's performance
different sequences to perform a variety of func- (particularly error rate) and the conditions under

tions. Small and simple modules are much easier which service was given, along with its history of

*o test, particularly when implemented in micro- reuse is helpful in determining the reliability and
code where exhaustive testing is crucial to relia- transportability of software being considered for
bility. The number of extremal conditions which reuse.
require testing increases dramatically with the 7. Library Configuration
size or complexity of the primitive. Routines
which perform a single simple function are more A firmware library consisting of each micro-
likely to be defined, understood, and documented code primitive and its documentation should be
properly and considered for use during another configured so that programmers within and
design. between projects can reuse each others work.

Increased flexibility and reliability within a Acproject can be obtained by considering the entire An Example of the Effectiveness of Simulation 'l

proectcanbe btanedbyconideingtheentre Testing and Software Reuse in Signal Process-
software task during the process of partitioning
tasks. For example, the implementation of a ing Applications
radix 64 FFT by three successive executions of a Although the complete effects of software
radix 4 butterfly requires the testing of only one reuse and simulation during design are not easily
radix 4 microcode primitive and provides flexibil- measured, some estimates have been made for a
ity to implement any FFT with a power of 4 recent HUGHES project in which the signal pro-
radix. A radix 4 butterfly is much smaller and cessing subsystem was delivered on time and
simpler to implement than the radix 64 FFT and within budget. In this project a signal processor
it can be tested far more easily. An insignificant was embedded in a guidance and control system
increase in execution time occurs because the to perform multimode high throughput signal
butterfly must be executed three times, but this processing tasks. Table I shows the estimated
is outweighed by the other advantages. Thus, by savings achieved due to simulation testing and
exercising modularity in the design. reusability is microcode reuse.
fostered by improving flexibility and reliability.

213

.. .. .. . .. .. " - " -"'"''"*.*'' " ""'" " ='" ". 4' .": ' " • -" ' -"o.



TABLE I A.

Estimated savings which occurred on a recent project at Hughes due to reuse of microcode and the use
of simulators to perform tests on designs at each level. 'I,

Source of Additional cost if Software of S.P had not been reused and simulation --
Subsys. testing not performed Monetary Units Budget ----------
------- --.........--------------------------------------- Coding of reused microde 30.2
7% Error correction at SP Subsystem Level 67.2 16% Error correction at system test level*117.•11277% --...................................................................- TOTALS-,TOTALS

214.5 50%

"System testing was not included in the SP subsystem budget. p

Thirty-five percent of the microcode primi- Summary and Recommendations
tives used in this project were lifted directly from
the previous project on which the same signal Significant reductions in development costs
processor was used. This reuse reduced the have been achieved at HUGHES through the
microcode design effort by an amount equivalent reuse of firmware and the use of automated vali-
to 7% of the entire SP software development dation tools. The specialization of signal process-
budget. Each of these proved to be 100% reliable ing software needed to utilize the hardware's abil-
as none of them had any errors reported against ity to exploit the redundant and simplistic charac-
them. Combined with the use of simulators to teristics of signal processing algorithms seems to
test the designs at each development level, this oppose its reuse. By making microcode modules
improved reliability achieved a 46% reduction in table driven and through the use of modular pro-
software module error densities! This reduction gramming techniques, a library of reusable
in the cost of correcting errors saved another 16% firmware components can be made which exhibit
of the signal processing budget. The largest cost the flexibility needed for reuse while maintaining
reduction occurred during system level testing in the specialization needed for efficiency. Simula-
which the decrease of latent errors in the signal tion at the system and software levels validate the
processing software resulited in savings to the designs from the top down and reduce error
project which totaled over 27%. (These savings correcting costs by detecting errors early. - .

occurred outside the SP subsystem budget.) A Software modules which are made small and sim-
net total of savings to the project of 50% of the pie can be tested thoroughly and increased relia-
SP budget can be attributed to the reuse of bility obtained.
microcode and the use of simulators to test
software designs at various levels of the develop-
ment process.

Bibliography

(1) Horowitz, e., J.B. Munson. "An Expansive 10, Number 5. September 1984, pp. 488-
View of Reusable Software". IEEE Trans. 494.
On Software Engineering, Vol. SE-10.
Number 5 (September 1984), pp. 477-487 (4) Pian, C.K., H. Habereder. "Signal Process-

ing Through Macro Data Flow Architec-
12) Jensen, R.W., C.C. Tonies. Software ture: NAECON 85 Proceedings, to appear.

Engineering, Englewood Cliffs, New Jersey,
Prentice-Hall. 1979. (5) Trujillo, E.. H. Habereder, 'Multi-

application Signal Processing .Architectures".
(3) Jones. T.C., "Reusability in Programming: NAECON 84 Proceedings, Vol. 1. pp. 190-

A Survey of the State of the Art", IEEE 200.
Trans. On Software Engineering, Vol. SE- •'""

214

. ,.......,.-.... ..... ,...'.: . -. , . ., . ,



7_~~i 7 -. .

- .%

APPENDIX A.

An example of a description for a typical microcode primitive". -'" .. "p

FIRN

GENERAL DESCRIPTION

FIRN is a N TAP FIR (finite impulse response) filter. The
function is realized by the following equation:

K-N L
Y(j) - SUM C(K)-X(j+K-1) j-,.M.-

k-I

where X(j) and Y(j). are the respective inputs and outputs
to the FIR filter. In order to prevent overflow, scaling
should be incorporated into the FIR filter coefficients.

STORAGE. PROCESSING AND TIMING

The number of instructions: 20
The number of clocks • 15 + M (B + 4N), where N

is the number of filter coefficients and M is the number of
output elements in one channel of the output buffer.

INPUT:
Register Usage:

CS Address AG Reg. Function

AGF Return address-,
AGE Label FIRN0.,
AGD Parameter table address.
AGC Label FIRN02
AGB INNER LOOP COUNTER
AG7 CSPTR.CS BUFFER POINTER
AG6 INPTR, WS BUFFER INPUT POINTER

PLSA AG4 INTOP. initial address of WS filter
input buffer

+ I AG3 CSTOP, start address of filter TAP's
in CS

4_1 AG2 OUTTOP. initial address of WS filter
output buffer

-3 AGI N. number of TAP's in filter
+4 AGO M number of elements in one channel "

of output buffer
DATA BUFFERS

WS FIR filter input buffer
CS FIR filter T.AP's table

OUTPUT:

WS FIR filter output buffer

PROGRAMMER: MAX THE MICROCODER
DATE CODED: 7 APR 1982
DATE OF LAST REVISION N/A II b.Si

215
r.



%r 'K~,'.6:-- -k

RESUME

J.L. HANS HABEREDER

MANAGER
SIGNAL PROCESSING DEPARTMENT

Data Systems Division

EDUCATION

MA. Mathematics, Astronomy Washington State University Award years: 1969, 1971
BA, Mathematics University of California, Riverside Award Year: 1967

EXPERIENCE

8 years at Hughes

As manager of the 110 man Signal Processing Department, he is responsible for development of [-
sonar systems and signal processors including hardware, software and applications engineering for radar,
sonar, communications and electro-optical systems.

Previously, as technical director of the EMSP program, Mr. Habereder has led the Hughes techni-
cal effort to define the hardware architecture and software concepts for EMSP. Prior to this as head of
the Signal Processing Analysis Section, Mr. Habereder's organization was responsible for the develop-
ment of Minipro application programs for MK48, ADCAP. AN/SQS-53, LANTIRN, and TIES. His
responsibilities also included the development of state-of-the-art support software for signal processors,
signal processor diagnostics, fault detection/fault isolation firmware, and signal processor architecture.

Mr. Habereder also participated in system design, signal processing, and mathematical algorithm
development. He performed analyses of voice data compression techniques, transform domain data -
analyses, mathematical modeling, and software reliability.

Earlier, at the Technische Ingenieur Schule in West Germany, Mr. Habereder served as professor
of mathematics and astronomy. He taught computer architecture and software reliability courses. He
also taught a wide range of mathematics, physics, and astronomy (including radio astronomy signal pro-
cessing) courses.

PUBLICATIONS
Author of 6 papers in the field of information science, signal processor architecture, data flow technol-
ogy, astronomy, an introductory text on astronomy, and a paper on education.

ACTIVITIES
Member of Pi Mu Epsilon. Signal Processing Curriculum Advisor, California State University at Fuller-
ton. Instructor of Hughes sponsored Advanced Technical Education Program courses in Engineering
Mathematics and Discrete Systems Analysis.

216

I....



zz

(4 -

E(f L

LL (n

217



6%.

-3

ac

d-W.~
.c~

cc. u .
:uJ

062

. A .
~ -~ - *A

:zm.

'a ~ :J

~ ~ ~ .(J

- .~ 4

A ~ A ': a~ - = 0a

4c~ *
E-. q= - zc
*c 0 0 0

218a

.........................................



C. Km Oc 29 W .w7aT- - 77 -i-

0 It

a 0. 1

-~219

o ~~:iii~ 26



:cn: -N&

I.' -- Z l..i L-V ,-

-A zii
600

16*

0.' I

~~He

2201



A N10=WOE PRMaTVE LIBRARY WThY IS RN ..........

99IIO M IN7 ILPOMH HUGHES:(
aaeaaaCOC*aaaaaaaa.a. ... aase . aa .. a~a....e~ .................e

fie ic~ a.s:.4.:14 t C (flil*tO a~S respofise$ fitr n

* fwabtt. .6 teea mce DV I%@ 40410.ne. Vehatas.:a

* aa

*~~i 15 ASFlUfele. in oSwer to prevent overtime. sclemag S

* e~~aebe smbleppaeaeed so%* see fie foster coefficients.a

* D
go aiisat OC11141oeTMN

@Gse uue. s.Pecile QoIN

* a
* The*~inet of b~t~ulafn: a.

* The ,e ^Of Valass. o %0;S90 4841,611 A. bP U a

^6a eec..,. us swrt. &Novi Poift

AGA~ 100170rb Geoge o WSfite a

Mai Soc ass. 80a4211&lle fWRfle a
0 GZ P.SBffterl cres

* a moc ~ ... ftoontl

Cara fite Ta tableaIiS~ISS ile tP

as aueie #&ffer ouptbfe

a RGNW: "A inGa:1O& KNa ahrf aSbI bOb Stbf

411 Cel : fiI ae' ftbfe

% U7PUI orLs 9Cttm w

................ se ......

2231



F.~ V.

%

IgrBGATD MSIQ AO~ TMS MEMh FM SIQaL :HUGHES:

ALGORIW. FUNTIONA SU3SES TES

HIGH~~~TS LEEECTORCIORS CTR

(SP~~~~~~~~~ 
S**.MR GR L V LS 

BS S E t~

APPLCATINS 4 SIM 222O
SOMARI DESI



A

00

IS

C-3

I; Ii if>

_ _ _ _4W

223



* ~ ~~ ~~~~~ I TV . T -- -- T . - - -
TV t X .TT

44 Co

S.0

0-a Pa

*4 c

us r.,-

000

w 3
WO m~~i~

cr.

cr.:5

z _

224



no .

*5 ,..*4

40 co atIf
----------

40W~~~ #, .6 41

*.-Jd 40171
- U ~ - 0 V) e ~ tflI

= I ~ J- z 4 E- 0 ~ I

Z z
Z rn

m - - L

U,4
0 9L

o 225

Le-~L



I

0 z

>.

0- _
~~Jw

ZI~ I- )

LLI' w /4

* 00
L-1 < N

5=.20 00LN

- w ~ c z 0

wi w -jz>u

0~ dr.w

9<0 w P

U. LAJOO I.-Oulx J

wu w

226



REUSABLE SOFTWARE IN SIMULATION APPLICATIONS

Frederic D. Heilbronner

Technical Manager for Microtechnology
Advanced Technology

2711 Jefferson Davis Highway
Arlington, VA 22202

(703) 553-7128

Any developer of software for a repository of the accepted simulation program
mission-critical embedded resource is faced for each application. As part of this program,
with the problem of representing the opera- each time a new piece of hardware or
tional environment of the software for software is delivered to the Government. the
design, development, testing, validation and developer would be required to supply a pro-
verification purposes. As very few embedded gram which would simulate the interfaces
resources (almost none) operate entirely in with that resource. These simulation
isolation, software developers, designers, modules could then be supplied to any
researchers and testing agents generally turn development program, test facility or training
to simulation software as the best way of school much like GFE is new furnished for
representing the operational environment manufacturing environments. The modules
Indeed, this concept holds true for the major- would all be designed to reusable software
ity of hardware development as well, specifications and written in Ada, with source

code supplied. This policy would enable reu-
The problem, as the development com- sability of the modules in any Ada Program-

J ~,munity operates today, is that each time a ming Support Environment (APSE), merely
simulation need is identified, a new piece of by obtaining the appropriate source code and
simulation software is usually developed, re-compiling with that particular (APSE's
Examples of this practice abound. Each Ada compiler. Thus, the USL concept would
development and testing facility (even facili- have tremendous impact in a number of
ties within the same service) has its own, areas. Time and cost savings would be real-
home-grown, curved-earth geometry target ized in design, development, manufacturing,
generation programs. There are at least three validation, training and configuration
known simulations of the SDC MK72 radar management.
in existence, each one separately developed
at great cost. In these cases. the results out- In the design and development phase of
put from each simulation program should be the acquisition of embedded resources, much
identical. Curved-earth geometry is the same of current efforts are focused on developing
whether used to generate missile tracks or the simulated environment for the resulting
aircraft tracks. Similarly. the SDC MK72 resource to operate in.
radar only produces one set of output signals,
whether they're being used as a direct feed to This requirement lengthens lead times,
a combat direct system or to a radar scope for increases effort and diffuses focus away from
a human operator to interpret. Research has the primary job at hand. If the
shown that the development and mainte- designer/developer could be assured of being
nance of simulation software runs to millions able to put together the required simulated P
of dollars at each of several facilities, environment utilizing GFE programs from
representing wasted effort and wasted dollars. the USL. then any given design and develop-

ment effort would be significantly reduced in
The real-time simulation applications scope and therefore in dollars. This would

requirement provides a unique opportunity appear to be a prime area for initial large
for application of the reusable software con- scale application of the reusable software con- t
cept. I propose the development of a cept. As much of the design and develop-
Universal Simulation Library (USL). to be a ment work is funded on a cost reimbursable

227
. . - .-...-. ,

...................

:.,;..:,.,::,,,:, .,:... .. .. .. ..- :....;.... .. . ... .... ,..__, ,,..,_.,,":._: ,.... -.,_ .. :.. : ,. ..,,.,,. .. .,.....-,,, :,.,," .,.;:._ .. ., . ,_ _, ,.,".. - . ,. :.,... .,... .,.,..,.,.... ..... ... ''.. .".. . . . .•'.i: .•



basis. control of scope and level of effort is mature simulation packages available under
much more easily attained. The contracting the USL concept, savings could be realized at * .

authority can enforce a requirement to use each test facility, as well as imprcvitg work
any applicable USL supplied modules and to flow and ensuring the quality ol testing
specifically exclude any costs associated with efforts.
duplicating any simulation capability already
available from the USL. A further benefit of After testing, training activities have

this approach is that the procuring activity is the greatest requirement for simulation appli-
assured that any resulting design is based on cations. Due to the inherent difficulties sur-

sound operating environment considerations, rounding training, particularly those involving

without needing to extensively review a con- combat situations. simulation of the opera-

tractor developed simulated environment. tional environment becomes crucial to the

Analogies to this method exist through success of the training effort. This problem

industry. One example is the common is particularly evident in the area of target

multi-meter used for testing electronic com- generation and fire control. Thus, each new

ponents. These are standard measurement training application currently has its own.

tools, which can simulate. for example. the custom developed simulation package

load placed across a resister to determine developed, even though the particular appli-

inherent resistance. When resistors are pro- cation may be utilizing other resources which

cured, the Government does not go out to have been simulated multiple times in the

the manufacturing facility, review the test past. The USL concept would not only make
procedures and inspect the design and opera- the development of training environments"-'

tion of the manufacturer's test equipment. less costly, but would assist in assuring

Rather, the procuring documents call for the higher quality, consistency, and reduced

manufacturer to supply "15 Ohm resisters" or development lead time.

similar language. This is then accepted as the The final major area of impact is the
standard by which the product will be
manufactured and supplied. The same con- cot
cept should be applied to embedded Currently, if a change is made in the way a

resources, i.e., "one target identifier utilizing particular resource operates, any number of
input from an SDC MK72 radar". Thus, the simulation packages must be modified. In

manufacturer knows that a track generator the example outlined previously, if the Stan-
dard output of the SDC MK72 radar is .'-

and an SDC MK72 simulation program can

be obtained from the USL which will provide changed in some way, a minimum of three

the correct inputs for the target identifier. separate simulation programs, at threea separate locations, must be modified. using .-
He does not first have to either program a three separate systems and programming

track generator and SDC MK72 simulator nor staffs. Not only does this approach cost at
procure an actual SDC MK72 to be able to least three time s s much as it should, it

develop the product.
increases the likelihood of error and of

Validation of embedded resources. mismatched configurations by a factor of

encompassing evaluation, integration and test three.

activities, requires that system performance I , s ei obe ealuaed n a ealsticenvronmntIn sum, by using real-time simulation L
be evaluated in a realistic environment, applications as an initial, large scale target for
Thus. any validation activity focused on the implementation of the reusable software
embedded resources becomes heavily depen- t, eeralibnefits woudbe reflized
dent on simulation software for task accom- concept. several benefits would be realized.

plishment. Currently, validation commonly First, the application can be tightly con-
takes place as part of the verification and trolled. due to its visibility in the contracting

validation (V&V) effort. Frequently. this process. Second. the sources of "deposits" in

task is performed by an independent activity the library are clearly identified and linked .
(IV&V). Currently. when V&V work is with other product deliveries. Third, the
undertaken n the V&V agent must first applications have a high degree of visibility in

develop the simulation package. This require- the development community, giving the

ment has led to circumstances discussed pre- opportunity to solve an existing, rather

viously. where each testing facility has its difficult problem with reusable software, thus
own independently developed simulation "proving" the concept and encouraging its use _E

software for each given requirement. Thus. in other areas.

by making fully developed, well documented,

228

P

I " .



V- - .-.. -!..-...- .

RESUME

b. "FREDERIC D. HEILBRONNER"I!

Technical Manger for Microtechnology
Advanced Technology

2711 Jefferson Davis Highway
Arlington, VA 22202

(703) 553-7128

SKILLS SUMMARY

o Accounting 11 Years
o Financial Management 5 Years
o C/SCSC 4 Years
o Computer Programming 11 Years
o Systems Analysis and Design 6 Years
o Scheduling (PERT,CPM) 5 Years
o CPR Analysis 3 Years
o Program Management 5 Years
o Proposals 4 Years
o ARTEMIS 5 Years
o Microcomputers 3 Years

EXPERIENCE

Currently, Deputy Project Manager, LVT7AI Program and Technical Manager for Micro-
technology. Responsible for the day-to-day schedule, financial and performance aspects of the
Company's support to PMS310 on the LVT7AI Program, reporting to the Company's Project
Manager. Responsible for establishment of a Microtechnology Group to support the develop-
ment of microcomputer applications in the areas of logistics, financial management and
engineering. Eleven years of experience in accounting, computer programming and general
management in both commercial and government environments. Five-plus years experience in
project and program management, specializing in the analysis, design, implementation and
operation of automated management information systems (MIS) for scheduling, financial
management and other project related functions. Certified Public Accountant in the Coin-
monwealth of Virginia.

Reviews all LVT7AI Program deliverable products to assure high quality of final docu-
ments. Prepares resource utilization plans for meeting contract objectives. Participates in
preparation of Cost Performance Report (CPR) Analysis based on monthly CPR submitted by
hardware contractor. Performed complete MIS analysis. design and implementation during pro-
ject start-up. MIS includes automated CPR analysis (with complete graphics), GFE/GFM
status tracking, vehicle location, transportation schedule and shipping instructions, ECP status
tracking and financial management systems.

Performed system review and prepared system master plan for an automated project
management system for the Army's VIABLE Project Management Office. Directed efforts of
three programmers/analysts to perform complete redesign and reprogramming of existing appli-
cations and design and implementation of new applications. Achieved average reduction of fifty --

* . percent in turnaround time in existing applications and tripled automated functions with no
increase in personnel or machine capacity.

229
Ir

," ..- . . . " .. .,-* .. .. . . -. . . . .-. . .. .- -



. . . . . . ---.-.- S.•'. • - " LP,

Developed a complete C/SCSC compliant performance measurement system for the I*%
Army's prime contractor on the Division Level Data Entry Device (DLDED) program. System
was based on ARTEMIS and included complete labor distribution, scheduling and costing func-
tions required to generate DODI 7000.1 0 compliant CPRs.

Performed system analysis, design, implementation and operation of an automated project
management system for the Department of State's Security Enhancement Program. System
functions included project scheduling, financial management and complete graphics. System
was ultimately adapted for use by the Multinational Force and Observers in preparation for the
peacekeeping mission in the Sinai. as well as the Department of States Public Access Controls
Project. Other work for the Department included development of a Case Tracking System for
the Office of Investigations and redesign of the schedule for the Moscow Embassy project.

Responsible for all management aspects of small professional services company, including
financial, technical and administrative matters. Performed all marketing functions including
sales presentations, proposal writing, new business plan development and client liaison for
performance-based marketing. Ensured all contractual requirements were met, as well as all
local, state and federal reporting and tax matters. Negotiated all contracts and other financial
arrangements, including credit lines and equity and debt instrument placements. Responsible
for over one million dollars in sales in three year period and corporate growth from initial staff
of one to staff of eight professionals.

Performed ARTEMIS system management and programming duties for the Saudi Naval
Expansion Program Operations and Maintenance Augmentation project. Responsible for
analysis, design, implementation and operation of the manning-based Forecasting and Estimat-
ing System. Other duties included maintenance programming for payroll and labor distribution
systems.

Staff accountant specializing in government and not-for-profit entity audits using
automated techniques. Further public accounting experience in records and taxation for estates
and trusts and automated preparation of tax returns. Prepared statistical analyses of rail freight
volume for line continuation case regarding the Delaware and Hudson Railroad for the Federal _"
Railroad Administration.

EMPLOYMENT HISTORY

Advanced Technology, Inc. (12/84 - Present), Technical Manager, Deputy Project Manager.

AccuSystems, Inc. (12/80 - 12/84), Principal Analyst

HBH Company (10179 - 12/80), Programmer

Deloitte, Haskins and Sells, CPAs (6/79 - 10/79), Staff Accountant

S. Walter Kaufman and Company, CPA (6/73 - 6/79), Staff Accountant

EDUCATION

BS Accounting/MIS, University of Virginia, 1979

ARTEMIS Project Management Course, 1980

Coursework in Pension and Profit Sharing, Virginia Society of CPAs, 1983

Coursework in Auditing and Small Business Accounting, American Institute of CPAs. 1984

SPECIAL SKILLS

Certified Public Accountant, Commonwealth of Virginia

230

% " .
.-.. -, - -..... .. .. -. . •..... -.- .- .. . . . . - - . . - . -• ... . .- .

- •"' "•" "•" ""• -"• "•" - ". """ "- ". " .""" • ".""" . "'.' " -.. ' .2. .,....,..,, 'S '''.,. ' ,_ '.: ,'''--_



Knowledge of variety of computer hardware:

IBM 303x, 360/370, HPIOOO,2000
*PC and compatibles Wang 015, VS

*Apple CDC Cyber
Osborne and CP/M machines

Knowledge of variety of computer software:

BASIC DBASE It & III WordStar
COMBOL Knowledgeman CPIM
FORTRAN Lotus 1-2-3 MS-DOS
ALC SuperCalc Apple - DOS
ARTEMIS MultiPlan JES 2/3
Panvalet Crosstalk RTE IV

PROFESSIONAL AFFILIATIONS

Project Management Institute American Institute of Certified Public Accountants Virginia
Society of Certified Public Accountants

231



, a°

--.-

0 OIS

Lm,

0.:: W,-.

E32 ''-

.CL

Ml]

-. _
0 W

o W LL

.22

4

C

232



cii
4Al

233~



0 t

E 4

U 0 0

CLC

CLO

- ~ ~ 60234



VI.
*0- 8

0
CL

o8 0

c ..

C IA

235

!}.i ::"



liul

C 5,

>"- -oft

m "M

!i +uJU,° , 4'Oi C+
-. Y-.'

ml 0

K 40

E° • .

236 "--

. . .. . . .

.. ... . ,--,.-, ".,.,,..'. , .:. ,..-...-. +. -. ." .- .- ..,. . -. . .. . .".-.? .......... ...-. ,,-..,.. : . . - .? . ,,?. +. ..... :- , .-... ... .? .-. - '''"''. .



ILI

z IC

IIf4to

2 3 I : 
I



..i'

IAI

CL

no C:

238



I 
IA

I MW

.2
I4I

CL

I 
EminI

I 2 3 9



.7 w~l, -6

.h

c*. ~

,.o.

c

Ew WE PI

" L i

cm1

40 I

U.L

24



vi

U.

C

amm
Uin

%A C

9 C), CL 0 j W m 

CLL

241UI



7 17-7.9

REUSABLE SOFTWARE - A CONCEPT FOR COST REDUCTION

Christine M. Anderson
Marlow Henne*

Air Force Armament Laboratory, AFATL/DLCM
Elgin Air Force Base, Florida 32542

Summary There are several underlying causes for the
increase in software cost over the past decade and
the projections cited above. A prime reason is

telrevariety of programming languages what
increasing rapidly. It is alarming to consider that hele y 17 here wee v 400
not only the total cost of military computer sys-400oters is increasing, but the percentage of the total languages, dialects and subsets of which few sup-temoist inraingbut the petwrcte s sof icea • ported modern methodologies for structured pro-cost attributed to software is also increasing ram development, making maintenance
Several underlying causes for this increase are cycle
discussed. While the new United States (US)
Department of Defense (DoD) standard high cost (3)) a nightmare (4).
order language, Ada. will significantly help to
reduce the software cost growth, other solutions Another contributing factor to the increased
must also be sought. Reusable software com- expenditure in DoD embedded computer
ponent technology and associated parts composi- software is inherent in software itself--its flexibil-
tion systems are presented as possible solutions. ity. DoD has been increasingly exploiting
Recommendations for future research are pro- software's flexibility in developing modern
vided. weapon systems. As reported by the USAF

Scientific Advisory Board, software "can embody
1. Software Cost Growth and implement abstract operational concepts: it

has no manufacturing cycle or cost. it can be
Much growth in the power and sophistica- modified quicker and cheaper; it does not wear

tion of US defense systems is due to the exten- out; and it can incorporate new features and
sive application of computers. Almost every functions in an evolutionary fashion without
defense system fielded today contains computers major investment in new systems and hardware"

whose software performs mission-critical func- (5).

tions (1). Most of these are embedded comput-
ers. An embedded computer can be thought of The Air Force F-111 program illustrates
simply as an integral component of a larger sys- this point. The table below compares similar
tem. Defense systems or subsystems using capabilities (additional offset aim pointer and
embedded computers include sensors, electronic updated weapon ballistics) implemented through
warfare systems, weapon system control, com- hardware on the F-I1l A/E and in software on
munications. command and control, navigation, the F-I 11 D/F. Given an existing software sup-
and target acquisition. port facility, the savings due to making the

changes via software rather than hardware have
The cumulative inventory of DoD embed- ratios of about 50:1 in cost and 3:1 in time (6).

ded computers is projected to grow from 10.000
in 1980 to nearly 260,000 by the end of the Modification Via Hardware Via Software
decade. While hardware quantity is increasing Cost/Time Ratios
rapidly, the percentage of the total dollar attri-
buted to software will increase from 65 percent of #1 S5.28M/42 ma. S0.IOM/16 ma
the total in 1980 to 85 percent of the total by 52.8:1/2.6:1
1990. This translates to a staggering projection of #2 S1.05M/36 ma S0.02M/10 ma

S32 billion (absolute dollars) for annual DoD
embedded computer hardware (2). *Mr Henne is now it 1irris Corporation. GISD.

So irewjr Operations. M2Ibourne. F:lorida 32901

243

':.-. .. i-.......-i.. ... -.... -... , .-. ...-...... .... . ... ._-2- .,:.__._o



" , • - . . .. ,_ . - -.. - : - .. . .- -- % ,. .

52.5:1/3.6:1 currently are being sought. The second factor is &
• .

#3 S8.OOM/78 mo $0.02M/15 mo really a reflection of our "age of information"
400:1/5.2:1 rather than a problem.One of DoD's more not-

able technological and managerial solutions is the
development and standardization of one high --

order language for mission-critical computersystems--Aria. While Ada has a tremendous -
Another cost contributor is the fact that sytm Ad.Wie dahsarmnoupotential to reduce costs in all phases of thesoftware development is labor-intensive. Typi- software life cycle, Ada alone is not a panacea for

cally each line of a computer program is writtenby hand. Unfortunately, while the demand for DoD's software problems. We cannot hope to

software is increasing, the number of qualified me te otwae neeof the softsaeon ._.

personnel is not increasing as rapidly. The Air line-by-line basis. One approach is to develop A sw.

Force Scientific Advisory Board reported that the concept of software reusability using Ada as
there is a 4% annual increase in qualified software the cornerstone.
personnel, a 4% annual increase in software pro-
ductivity (based on current methods) and a .. Software Componentry -
widening gap based on a 12%1/o annual increased
demand for new computer software (5).

The reuse of software components has the
In more absolute terms, the shortfall potential of reducing the shortfall of required

software engineers, while increasing software reli-between supply and demand, currently measures ability.
50.000-100.000 programmers, and may rise to 1.2
million by 1990 if remedial measures are not
taken t7). There is a great deal of interest in software -

component technology. The following discussion
Another cost contributor is the problem of represents a collage of thinking on the subjectthat has been generated over the past several

building reliable software. Instances of software
reliability problems include false alerts for the years.
North American Defense (NORAD) system,
space shuttle's on-pad launch delay, and test mis- "Having reusable software available can
siles (and even airplanes) hitting mountains they significantly reduce system development time.
were programmed to fly over (5). The criticality The more software that can be obtained off-the-
of the reliability problem is made clear by C.A.R. shelf, the less new software that must be created.
Hoare's warning: "The next rocket to go astray The risks involved are thus reduced, since off-
as a result of a programming language error may the-shelf software should already have been well
not be an exploratory space rocket on a harmless tested and debugged. Reduced time and risk
trip to Venus. It may be a nuclear warhead enhance the probability that a major resource
exploding over one of our own cities" (8). savings, ultimately reducing the required DoD
Developing reliable mission critical software software investment." - Commander J. Cooper.
where errors can translate into life or death situa- "Increased Software Transferability Dependent on
tions is a time consuming and costly process. Standardization Efforts," Defense Management

Journal, October 1975.

To briefly summarize, the reason for the
tremendous cost growth in defense embedded "Software reuse saves development time
computer software is multifaceted. Contributing and money, and field proven software is more
tactors include: the large number of existing reliable." - Strategy for a DoD Software Initiative,
computer languages currently being used: the 1 October 1982.
increased exploitation of software's flexibility "
resulting in its increased utilization: the labor- "The Introduction of reusable software
intensive nature of software resulting in a shor- components can significantly relieve the resource
tage of qualified software engineers. and the demands thus assuring continued responsiveness
complexity associated with meeting the reliability to new threats through the introduction of new
requirements of mission critical software. Solu- or enhanced weapon systems". - Report of the
tions to all but the second factor can be, and DoD Joint Service Task Force on Software

244
- .. . . . . . . .. . . . . .. t .

. . . . . . . . . . . .. . . . . . . . . . . . .



Problems, 30 July 1982. Enterprising companies realized that
significant markets existed for certain low level

Recommend the Air Force "Initiate a set of digital building blocks and began to develop cir-
cult cards which contained individual gates, flip-

formal laboratory programs to define and exploit
opportunities for software standardization flops, etc. These circuit cards (modules) made a

significant contribution to the design of systems.throgh eusble oftarepacagesin eleted By using these ready made modules, the designer i-

application areas." - Dr. Edwin B. Stear, former ws hee rad mde odueste designwas freed to do more productive system design.Chief Scientist of the Air Force in a Briefing to While these modules were helpful, a significant
General Marsh, AFSC Commander, 14 March9General as, FC omadrproblem still existed when trying to use modules

from different suppliers. Each supplier chose his
own voltage levels for logic "one' and "zero", and

"Achieving reusability in mission software other interface details were often different.
represents a good opportunity for dramatic pro-
ductivity gains since using existing software in This level of modularity is close to that
lieu of new software not only saves money but which we ire approaching today in software. We
also saves documentation costs and test costs. have standard math and utility routines which
And since the software has already been verified.
it increases the quality of the new system." - The exist in libraries but little else is available for

Army Science Board 1983 Summer Study on general reuse.
Acquiring Army Software.

Once the advantages of reusing hardware
2.1 A Hardware Analogy designs became evident, the next step was to

improve the production technology for hardware

There is nothing unique about component modules. As integrated circuits (ICs) became

technology: it has existed for years in the digital possible. computer and general digital com-

electronics world. The uniqueness emerges when ponents represented the vast majority of unitselcrniswrl.- built. This. of course, was due to th'e modular
we apply this technology to software. To a great bu T of couse, was due to the moextntit anbe aidtha tdays sftwredesign nature of digital designs with their many common
extent, it can be said that today's software de components and to the design methodology

0process has not progressed much beyond :he which had already begun supporting reusable
early digital design methodology in the digital modul d al e aben ti fposandhardwa e indu try. " m odule designs. ICs enabled entire flip-flops and "

other circuits, which had previously taken an

entire circuit card, to be fabricated on a single IC.
In the late 1950's and early :960's low level Ns production technology improved, more cir- """

components, such as vacuum tubes, transistors, cults were placed on individual ICs to form inter- .,

resistors, and capacitors, existed for the design mediate modules such as counters. adders, etc.
engineer to use for his circuit design. A strong Today, we find Very Large Scale Integrated
analogy can be drawn between these and the (VLSI) circuits which represent large portions of
assembly language statements used by the the overall system. Since these circuits are so
software engineers of today. Each time a particu- large in scope. most systems may not use more . -

!ar kind of circuit. such as a gate or flip-flop was than one of a given circuit. Even though we may
needed. the engineer had to select the type of only need one circuit of a given kind, production
circuit and the components' values which would techniques and reusability have reduced the cost
,e ased. When large quantities of a particular of these complicated circuits to a level where
kind of circuit were needed on a project, the they are competitive to use for a variety of appli-
engineer could reuse his design !'or that project. cations. A good example of this is the micro-
The design of each circuit for !arge projects was computer. Today we find full-scale digital corn-
such a shore, individual engineers kept earlier puters, on a single IC. performing timing tasks
designs and tried to borrow from them on new for small appliances which previously used analog
projects whenever possible. This also led to pub- circuits or mechanical timers.
iished design compendia of circuits much as may
be found today in collected algorithms and pub-
ished math or utility routines. If the current trend continues toward

software module production and reuse, we should
see the size and use of common software r

245

• - - . J /,3 - .



modules expand rapidly, paralleling the develop- parametrically described arrays, minimal use of
ment of hardware modules. machine dependent constructs such as machine

language code, microcode and specific 1/0
Thus, an analogy can be made between the features; and implementation of well chosen

inventory of software components and the inven- common functions.

tory of prefabricated circuits available from sem-
iconductor manufacturers. The software The components should be encapsulated in
developer resembles the computer designer, who such a way that their external usage is completely
determines the gross system structure and the defined by an interface specification, which is
interconnections between circuits but relies on physically distinguishable from the implementa-
the prefabricated components for low-level opera- tion portion. This interface should be as firm
tions. Over the past few years, larger com- and well defined as that for the hardware inter-
ponents have been developed. A similar technol- connection to an integrated circuit. Further.
ogy is needed in the software world (9). components should be orthogonal. This means

that, unless contraindicated by their interface
2.2 Software Componentry Methodology descriptions, they may be used in each other's

presence (12).

Past critics have maintained that the
software reusability concept has not flourished Simplicity in both design and implementa-
because individual concrete programs are too spe- tion, will facilitate program understanding and
cialized to be reused. However, with the advent modification. The quantitative counts (number
of Ada, we now have the means to more easily of operators, operands, nested control structures,
construct software components at a more abstract nested data structures, executable statements,
level. Ada's package feature will permit the crea- statement labels, decision points, parameters.
tion of software packages analogous to sealed etc.) will determine to a great extent how simple
hardware components that consist of an external or complex the source code is.
interface or specification and an internal body
which the user cannot alter. Ada's generic Component source code should be as self-
feature extends the package concept to include a descriptive as possible. One approach to achiev-
parameterization facility for tailoring packages to ing this goal is to embed compilable program
particular needs. design language (PDL) in the source code, thus

insuring up-to-date cross-correlation between
Additionally, Ada's strong typing imposes design, code and documentation. By using valid

constraints on module interconnections and Ada procedure names and declarations in addi-
allows consistency between formal parameters of tion to commentary in the PDL design, rigorous
module definitions and actual parameters of checking of the PDL can be performed.
module invocations to be enforced at compile
time (10). These features provided by Ada for In order to encourage use of software com-
reusable software components are richer than ponents once they are implemented, a systematic
those of its predecessors. approach to accessing and combining particular

instances of components must be pursued. This
Studies investigating methodologies for approach focuses on parts composition system

applying Ada to develop reusable software com- technology.
ponents are only now being initiated. Tlus the
technique involved in developing generic pack- 3. Parts Composition Technology
ages is not well defined and almost no implemen-
tation experience exists. A recent Air Force A parts composition system supports the
study identified criteria which impact the reusa- building, testing, and optimizing of programs
bility of software. Chief among these are applica- using reusable components. This system must
lion independence, modularity, simplicity and include, at a minimum, cataloging and retrieval
code self-descriptiveness (11). facilities, a language to compose parts, a ware-

house of parts, and an editing and testing facility
Application independence can best be The Japanese have reportly achieved up to an

achieved via generalized data structures such as 85% reuse rate in their software factories by

246



using these currently available information (via leading questions) the requirements from -
retrieval techniques (13). Toshiba's Fuchu him.After reviewing these generic classes, he
Works Software Factory, specializing in real time asks the system to retrieve more detailed descrip-
applications, averages 2870 instructions per pro- tions of certain components. Following the
grammer per month (14), compared to a U.S. examination of these, a more detailed review of
software productivity rate of 75 to 280 lines per the specifications associated with a select few
programmer per month (15). Toshiba's produc- components is performed. Finally, the actual
tivity is due in large part to software reuse. A component code is examined. This retrieval
mature parts composition system will include mechanism can be made increasingly intelligent
thousands of software parts available in a com- by providing facilities for querying the user for
mon environment. In theory, a software engineer additional information if no component is found,
can attempt to combine any two available parts so by searching for related components or by cus-
the system must provide robust mechanisms to tom tailoring components to match the user's
insure reliable and meaningful parts composition request.
(16).

This example is still at a fairly low level of
Parts composition systems may range from automation. A more advanced parts composition

manual and semiautomated software parts cata- system would allow the user to describe (in a
logs to more advanced automated systems, sys- user oriented high level specification language)
tems that may even include artificial intelligence an entire subsystem's requirements (e.g., autopi-
(Al) (i.e., expert systems). lot for a particular type of weapon). The system

would query the user concerning critical aspects
of the subsystem and then proceed to retrieve,An expert system is a man-machine system customize and compose the necessary software. -

with specialized problem solving expertise. The coe f
first generation of Al focused on defining a gen-
eral mechanism of intelligence for expert sys- There are several parts composition systems
tems. The current perspective holds that the true commercially available that offer varying degrees
power of the expert system comes from the of aid to the user. Thus far, none have been
knowledge it possesses, not from the particular applied to the development of weapon system
formalisms and inference schemes it employs software. An evaluation of these systems should
(17). Thus, it is essential to capture the be performed.
knowledge of the application domain to be
modeled. 4. A Related Effort

While various domains of knowledge are The U.S. Air Force Armament Laboratory
being studied and common functions extracted has just initiated a program that addresses
for later component implementation, parallel software component technology and supporting
investigations of methods to organize, index, parts composition systems. The program, Coin-
describe, and reference software components mon Ada Missile Packages (CAMP), features
must also be pursued. Further in conjunction two related study efforts: a commonality study
with all of these activities, studies aimed at pro- and a parts composition study. The objective of
ducing more advanced user friendly systems that the commonality study is to investigate the feasi-
change data and algorithmic representations into bility of developing reusable Ada components for -,

code, that is, software generator systems must armonics systems. The approach is to examine
continue, existing missile software and/or associated docu-

mentation in order to identify candidate common
The following example describes one functions for component implementation. The

scenario of a user interacting with a knowledge- second study, to be performed concurrently.
based parts composition system. .Assume the features an investigation of current parts compo-
user is interested in locating a guidance algorithm sition system technology and recommendations
for a particular armament electronics (harmonics) regarding the most practical approaches for
application. He asks the system for retrieval of achieving both near-term and long-range benefits.
all generic classes of guidance software that meet Based on the results of the studes. a follow-on . -

his requirements. The system may actually solicit implementation phase ill commence aimed at r

247

.... ... .... ... .... ... .... . -. ]



developing a parts composition system and asso- (8) Hoare C.A.R., "The Emperor's Old %
ciated reusable software armonics components. Clothes," Communications of the ACM,

Volume 24, Number 2, February 1981. t
5. Conclusion ,,', ,

(9) Wasserman A.I., Gutz S., "The Future of 6"d: ?"

In closing, it should be stressed that Programming," Communications of the
software componentry will not evolve quickly or ACM, Volume 25, Number 3, March 1982.
cheaply. Both mental and organizational road
blocks must be overcome. However, the tech- (10) Wegner P., "Varieties of Reusability,"
nology holds such a tremendous potential for Workshop on Reusability in Programming
slowing the cost growth in DoD mission-critical Proceedings, Sponsored by ITTT Program-
software, further research is imperative. This ming, Stratford, Conn., 7-9 September
research should be aimed at joining parts compo- 1983.
sition technologists, who are often from
academia, with DoD mission-critical specialists inorder to achieve a fruitful blending of composi- (11) Presson P.E., et al., "Software Interoperabil-tode tochiueve a fru l bledg odomsi- ity and Reusability," Boeing Aerospace
tion techniques and DoD knowledge domains. Company under contract to Rome Air

Development Center, Griffiss AFB, NY,
NY, RADC-TR-83-174, July 1983.

REFERENCES
(12) Spector D., "Language Features to Support

Reusability," SIGPLAN Notices, ACM.

(1) Martin E.W., "The Context of STARS," Volume 18, Number 9, September 1983.

IEEE Computer, November 1983.
(13) McNamara D., "Japanese Software Fac-

(2) Electronics Industries Association Govern- tories," NSIA Conference, Arlington, VA.

ment Division, "DoD Digital Data Process- May 1984.
ing Study - A Ten-year Forecast," October
1980. (14) Kim K.H., "A Look at Japan's Develop-

ment of Software Engineering Technology,"

(3) Grove H.M., "DoD Policy for Acquisition IEEE Computer, May 1983.

of Embedded Computer Resources," Con- %
cepts, The Journal of Defense Systems (15) Zelkowitz M.V., Yeh R.T., Hamlet R.G.,
Acquisition Management, Autumn 1982 Gannon J.D.. Basili V.R., "Software
Volume 5, Number 4. Engineering Practices in the US and Japan,"

IEEE Computer, June 1984.

(4) Deutsch R., "JOVIAL: The Air Force
Software Solution in the Years Before Ada," (16) Rice J.R., Schwetman H., "Interface Issues
Defense Electronics, October 1982. in a Software Parts Technology," Workshop

on Reusability in Programming Proceed-
(5) USAF Scientific Advisory Board, "Report ings. sponsored by ITT Programming, Strat-

on the High Cost and Risk of Mission- ford. Conn., 7-9 September 1983.

Critical Software," December 1983.
(17) Hayes-Roth F., Waterman D.A., Lenat

(6) DoD, "Report of the DoD Joint Service D.B., "Building Expert Systems. Addison-
Task Force on Software Problems," July Wesley Publishing Company, Inc., Reading,

1982. Mass, 1983.

( '+ 18) Berard EV,"Ada Education A 'Mo,.n
(7) Boehm B.W., Standish T.A., "Software E.V., "aoving

Technology in the 1990's," Appendix to Target." Defense Science & Electronics.
Software Initiative Plan, October 1982. May 1984.

248

. . . . . .. .. . -. .



19) Dolotta E.A., et al., Data Processing in (22) Bunyard J.M., Coward J.M. "Today's Risks

1980-1985, John Wiley & Sons, NY, NY. in Software Development Can They be
1976. Significantly Reduced?" Concepts, The

*. Journal of Defense Systems Acquisition

(20) Boehm B.W., Software Engineering Management, Volume 5, Number 4, 0
Economics, Prentice-Hall, Englewood- Autumn 1982.
Cliffs, NJ, 1981.

(23) "Missing Computer Software: A Bottleneck

( (211 Standish T.A., "Software Reuse," Workshop Slows New Applications, Spawns a Booming
on Reusability in Programming Proceeding, New Industry," Business Week, September
Sponsored by ITT Programming, Stratford, 1, 1980. -

Conn., 7-9 September 1983.

249

I.,

. '.*..



p.•

RESUME

A. MARLOW HENNE 6 e

Senior Associate Principal Engineer, April 1985

Marlow Henne joined Harris in June 1984 as Group Leader of the Methodology and Language

Group. His duties include planning and direction of development activities in the areas of requirements L
analysis, process description languages, rapid prototyping, automatic document generation, Ada technol-
ogy and related compiler and environment activities. He also serves as a Distinguished Reviewer on
the Evaluation and Validation Team sponsored by the Ada Joint Program Office and is a consultant for
the U.S. Air Force to NATO/AGARD on Ada for real-time guidance and control applications.

PREVIOUS EXPERIENCE

Prior to coming to Harris he was Chief of the Computer Technology Section of the Air Force
Armament Lab. Duties there included planning and directing the embedded computer policy and tech-
nology for the Armament Lab. Day-to-day duties included directing the development of an Ada com-
piler and tools for real-time guidance and control of tactical missiles, computer architecture design,
interprocessor networking studies and simulations, and distributed processor architecture design, and
the supervision of military and civilian engineers involved in hardware and software design. He ori-
ginated the first Reusable Ada Software Packages effort funded by the STARS project and a VHSIC
missile processor project. Duties of that position also included serving as the Embedded Computer
Resource Focal Point for the Armament Lab. and VHSIC Focal Point for Eglin AFB. He participated
in writing the Air Force (AFSC) Ada Introduction Plan for Mission Critical Computer Systems and the_
Air Force STARS plan. He led a project team which developed the computers used in a Conventional
Cruise Missile which were also modified to be used in the F-16 upgrade. While there, he also served

*i on several advisory panels to Air Force Systems Command, NATO and JTCG. -"-

He has also served as a Adjunct Professor at the University of West Florida and Troy State
University, teaching graduate and undergraduate courses in computer architecture, data communica-
tions, operating systems, and Ada. In 1984 he presented Ada at a short course at the University of
Southern California.

At Metric Systems Corporation, he was a Senior Systems Engineer, reporting directly to the Vice-
-% President, responsible for the design of real-time Radar signal processors, computer controlled data

transmission systems, real-time industrial power control systems. and industrial plant monitoring sys-
tems. In this position he was also responsible for marketing the company's capability to the federal and
state governments as well as industrial customers. Responsible for establishing a network of field mark-
eting representatives, and directing their work.

As a Physicist with the Naval Coastal Systems Lab., he designed navigation and mine-hunting sys-
tems using Radar, Sonar, Laser and computer techniques. -

In addition to the above technical experience, he has served as President of two corporations deal-

ing in construction and land development.

EDUCATION

Candidate for Ph.D Computer Science - Florida State University

250
r



77t ~ ~ ~ ~ V~ ~9.~~ ~~ ~-, . - 2

graduation expected - Fall 1985
M.S. Computer Science - Florida State University - 1982
Graduate study in Business Administration - U. West Florida - 1969-71
B.S. Physics - Florida State University - 1962

PROFESSIONAL AFFILIATIONS

IEEE - (Computer Society)

SECURITY CLEARANCE

Secret (NATO)

2151



7T,

~C%J
~cY

LIJ LL

=L -cc Lj-

IO LJ LLAJ~

CCOO

ULU

LU 5.

252



C..)

CZ

LAL
LJ

LU
LI:

LA- ---

S L

LU LJ CD

LLu

LL.

... LU A3

LLJ

253



C-,1

u-in
I- _ _ _ _ _ _ _

0U

0 LAU

SGVnLINIAII~n

25



~LLJ

~LLJ r

LLJ'

ccC-
=L

C-7

LU 
*i..

255cc



.* 

-

= C=

LLLLJ>

LALU

LU _

LU

-LJ C/D

cc LI- -J

i = ; L-

LLU-
LU. LL

LL. cz2IU 
LL

UU uU C =

LL. mc

LUJ - .

06, 25-6



mc
- u.

oL.

LLL

LUJ

z uj 3

-JJ

CLL

LLI r M FCD,

om Go t ~

SIS03 0~~ 40=33

::~iu257



ItI

C4C% cL6 L

_. L LO -

LLL

U- C) F ;-

LL.L

_ _ =

=C

U- C

258



LLJ.

LJJ -o

LL. 00 C-

0 LUJ
= Cl- 0cn

cm LL.~

LU J 0
~LLJi

* .14

LC
L JJ LL L

U-0
CD0

II_______Lj1
I I i I I

3UMUODO 3I

cnr

L.259

....................................................



C41D-

MWE

LIU

NOIIVOI1VA N SA

0--------------- ---

LU 'lip
3 1

:1 L

-- - -4 - - - - - - -

26



LU LU

LLLU

LU
CM-

LuU

LOU

HOUB3103800 01ISOOWI-I

2610



LJ L

J

LL

U- "j '4uz

IX-

act-

-C.,.

to uJ CD ccC: -- cou-
-= --m

Cu -
CI 4=:113

L262



-J >

I--

LL-J

-J J

u.J.

26

1263



-7 t~ -177-~ -L NC~.-. %C1 17K- L ~ -

LAJ C4

C.2 .,,

LLJ.

cm-
dUc~

LU C.Z

.

264



JL

LLJ

LU -

LLU

LJJJ

co C IO~

C-, L

C4,
F- 2eC4

C.,M
U.3 ~= =

265

Jtr



C-. 
9L

uj-

-JL

CL.

C-2 LUJ

- - LAb

LU LU

cm .A -

LA- C. j C4
C40 -U - -

- LU-

LLLU Cn
C L=A J U

COOLU ~ -~-

~ ~ LU = ~266



2. ~ ~ - t %'. . W

-JA
=4 c

LLJ C#r

267
cm W COI



C-,V

coo LI

SLLJ

I>. LU O

LUL

-JJ =~L

- LU LU I

IL-

LU

= -7 ,L

LL Cc 2 -c

_ cc

coo I- a- co

268

%



n C,4

n L 9- I.

I-- >i CL.C

oLJ >- cm C,
LUA

I-se
C,, _

LLLL
9--

=U C', LUJ
LUA LA- UC-

t C,4

LL L

CD LU J L U2L= ~ -. I--~2 c~c

LA C= ;a c-

* A ac 04 c

C.3 ... .

209

4-.....................



-~EL -.-- m '.9wrrT r

* A UNIFIED SYSTEMS ENGINEERING
APPROACH TO

SOFTWARE REUSABILITY

Ted Hobson

presented to
Workshop on Reusable Components

of Application Software

by
Computer Sciences Corporation

271



I..L

co LLJ

0-3 Lii7w
L - if) Lii i

LiLI mA

x=, Li Li L

<C -' . X-

x~ cLJ LL LiiLi -

- , W ( Li i cLii
a-w co: Li a--'

0-3 4= 0 = X- = Cl o
'C- L..Lj - LAJ . k U-

Wi '7- LA- La.J ocn Ck
oL L =- --- U--

3- Cr,- C....) (f' U..r C-3 c : 17 _-

=A - - I =I I

LCf

* L

272



w w7w .. 4- -- Z W. MT W

L

273



L5--

LUJ

LA-U

a.-.-

LU _I A <:4
- 1 7- U -= L A-

U- cc -LU I CL- L=. m- 0-)a& LUi
CL -M (.c:I -- ~ eaa-n Li..

C~ .U U-) -:_ -k: ch

* LA.- cM LU WJ - 0-.a~a a U '

LU: <r ) a k. C - ...

cn LU L '9- aa..:.A-

a L. L
.z. I I __



I-0.

LLU

>-J L L .
LLU C/) )

- LLU

U- CD-

V)~ LU

-D LU

o~M -cc .

L-

-L w U

CIOcr--j .

==

LL. ~ ~ V) -L LU w C

(= - = , CL __j

U.10 LU /) V 0C-
Ln - >- >. =:.

>. = U 0 U L

L Cl- C- CL.' L
U... 1 C I-I V) LUV) - C) = L

V)LU
Li I ~ L

27



-L Ck,

CQ:: LiiJ

I-.- Cv - L

8-- con Lii

ri2= Ci- (.i- .c) Q::

C-a-- = LiiLi

7W X, Li = = 3- . D

- < = CDJ w~ 3

2=3 LL- c<3- LL

L-X' LA- -

LL- W-.z ,

- c..* C.= CO i- -I.-

~~LL CL. u. ca I I I U

W C- 4= W-

CL<-CMe L

L.L) ClfC:: =

Im- = #,-- D LA

w LA- r-276

............................................



LuJ

LuJ

LUj
-9ccJ

tD- C,o c -
- 2:en

LuL CU L

- CD2
LL I- -

CD~ -

= L.

2: 27-7



LdJ

LLi

Q-I.

* C278



LLU

V) -j C C C j

~ LU

C) U-

>- U -

uj W- :>

cm LU -L LU J

cd,) P- u L LL
C) - C:) w c,) cn-I

(-.Q) M: '-

C) cr C ,) tLU 2" L

GO -. L'C -b- U ~- LUJ
- LU J ~CL. I- C/

U- LU C
-cc CD LUJ Cd) Z:

-zU Cd - I X - - >. w LU (-

C : __ U - - Lj) d

CD 2: C)(U U

CLh-0L 'U)- L

CLUJ

LU' C~iI I I I I I i
C CCD

CL E

Cd)<

CO
C/C

L~CL

279



T..

ol O'=L.

- .0.

280a



IN~

LL.L
QI- LL

LW.

zm

LA ~ LL

LU 0

L- CL.
C)~ C1

"D =~ 44-)

- LUJ C
-- C)o

-::

LW
-l LU

LU

LI-

C C

U-

>-~ tD-_
-J LUJ

LU rL L

LU LU2LU



LA..

0Li

LL&

CL

Or)

* ifw

282



Q'a

C-)

LU ij

cn C)-

~LLJ
LL- w-

C') W- -11 =

LL : - cn 0L C2- -j .C
- LL- _ I-

Cl =- w X-.
C-) Z' LU U .

LL-~~~.' -1 = (-)

0 ~ -i CC,,
I. I- I

LL)LU L

C-))

283



LU&
Pp

.j,

w AJ-
Fj = <-'

2U

20

0 zi
CdU z wA L W

W0 < -
2 0

LU C.) ,,U 2A z
- z0  2 =o zJ -

W wo) 2l 0 z 0Lc

SUJ LL Lw'. 0 CD w
c j 2 ~Z A> O- z ZZw (A

> 0

co A > I<- 2 I-I
w W LU wLU > U

-1a

284L

CL Lu< < u LL < u x .
......................................



<3rr

-LJ

a--

on 0

285



LA-

Lii clc Lii
C-& ; CL- k

-QL

0L LiL LLJ

- C=

-2 -J - C U
C=-' LLIii - LA Li
<- t= <r i *C~

0 ~L~ Cr - Lii' 0....

0 Lii I -

(0 - a) - CJ) Li

Ci~~Ul L-0i r, - Li

L&0:J L4 - i i
* Ci - Ca- Lii

* r ~ .' ~.ii Li c

D : -- - :

Ci Li LL .... a Z286i



LJ

LLi

Lii

LXi

0

Li

*(L

287



-41

UC-,
LUJ

C -j

or~ U- UL

LU C)

-c-C C/3 L LU LL C
:3 =. .- -:% -1 1- 1 -

2:- cn 2:J I- a) -M
LU- i- 2 0 : C-D-)

C: X: ) C= - Ca2:- I )

-.. J LU. V)C/

LL- -C)~ -2

.~~C= C -)LALJ

I~~L I , I I- L- 0-C-) LU I C~ I C IIL
U... __ ~CL

C ~ i .~ C) C C U

(I.) .~. = I-...4-288



CD

2=

C/3
LUJ

C) ) ,

-cc-

CcC,

V-) C/) -

LU -

LlLU

LULi

CC w : CZ LU) LDC.

W CD LU- 0 U - 2V)U - 0DU->
C.. :r- W- LU LD:

=7LUC, : 0- C.. L6o~~= V). C) J.
C) 0.= LU C 0 -Cl- = F- LUJ 0.> :3:..)

_ -)- U j=~ C) C- CC U= )J C-C: Q- - 0 2:2 V)) U U

- ~C C) LU - L r_ U C) -0 , 3 C.
C,) 0 U C) C, 0L: :..

0L CA- i 3 ) ,

C) ~- .. C)L

LU0cn. 0 ~ U , ,
IF, -) C) 0 ~0 L ~ 2

LU ~~- ~ = 0 .. J -289



2 z
2

2

o 0c

LLU

>. UJ u

Co LU 0

cr 0L L
0 I

CAm

2 h

29



U6

* Cc

2 Cc
L2 z 4

0

CL2 r C

2 0 o
wj 020z0 0 0

29



ww w ccI wc

cc 0 .W 20N" -*,f "ot "t.0f ft m

ra2 CL)w cc
0 00~W~ cc4

Lu cc P U a2X Q2. 2(
L2Uj CC~ 4c $.a P

~~EI' CA0 4 o.. . in -A
z~ Lu Z.0 zO z m

a..- CL V".z< 0o for4

2h 2920

a 24 A n0 6(
c02

L62 ) 22

zz

2920

.~~. .L. cc. * \ V ~ ~ ~ . . . . * . ~ 5 * 5 - . . . ... 5

~ .~'.... ~ ~ .: . ________ Lu



LAJ

Lai-

-C= LU I

-h C") Li

LA-. ar,-- .

CDI U-) -m-

0 = 3ati
CL 93- W C

=h -a LA- -- I L'4C.'W

0- =m <> c.3

0 <> - = L
9Cr) O LaJ -- <> a- C

- Li o* U- CM..1La

La CJ C W a- Li

LL L Ai J Cr) CLU C3-
C... i= LL- LL c::.4

ob --- - LJ LA C

_ C LUJ CM Cl Cr-

CS (- C-) CL. L i LA 0C.
* Z -U.S - LU*L .

QC 1 a- La.-L
a. _ U UC

xr .. .. ..)C.) *

- - U C.. D I

- = a~293



. - -l U -
<

: |

'-.-a'
"..@

a --

-l 
'', - i

'U -
"'-"

x 
..,:.

_ _ _ _:":':':

• .. . :'f.

,,,..-. ,. :

ma -I-.-:.

,. .-. ',. -.. .,',. ,_.,r.. . . , .. . . . .- - ... '. .". .
'', ,',., ¢.'U:"



U-) LUA LAJ
LAJ -- a-)

c. - = 4'-

UJ LO

- W -r

= b.-) <>

co <-C) LU LJ
<Z -fC La.I P

C~~~~~ UJCo a -=C=

i..- CO

ILwL.i L" ae'

0. = D-- Qe

<>LL LAJ La-

w~ L L .-c <3-

LAJCM L- (.0 <> LLJ L

CD I

~ = L~i295



ISSUES IN REUSING SOFTWARE

Richard A. Howey
Lynn M. Meredith

Sperry Corporation
St. Paul, MN 55164-0525

The following paragraphs briefly summarize

1. INTRODUCTION some technical developments which the authors

The goal of widespread reuse of software believe have contributed greatly to the field.
has so far been elusive. While the potential of
reusable for increasing programmer productivity 2.1 Ada Related Developments
has been recognized for a long time, Sperry, and The Ada language has taken a large step
most other companies, do not have an toward the goal of reusing software. Examples of
organization-wide process for reuse or a library of this are Ada packages and generic packages.
reusable components. Why? Packages can be written to solve problems that

occur often and used directly by other develop-
Appendix 11.13 of (DOD82) described several ments that encounter the same problem (similar
obstacles to software reuse: to subroutines). Generic packages are a more

(1) Software is rarely designed for reuse powerful concept in that they allow the general

(2) Reusers have difficulty finding software to algorithm to be written independent of the con-
reuse text of a specific problem. Context-specific

characteristics are expressed by generic parame-
(3) Reuse is risky because the software may not ters which, by instantiation, are applied to the

work general algorithm to transform it into a solution

(4) Proliferation of programming languages to the specific problem at hand. This is not,

(5) Lack of standards however, enough to solve the whole problem..

(*' (6) Inappropriate procurement practices 2.1.1 Environment Support for Reusability

It is our contention that much of the tech- Ada environments are being built by organ-
nology which is needed to overcome the first four izations that facilitate reuse of Ada packages and
obstacles either currently exists or is now being programs. The Distributed Software Engineering
developed. However, DoD contractors have little Control Process (DCP) is a classic example
incentive to apply the technology for reuse. In (DCP). The strengths of the DCP approach lie
addition, obstacles 5 and 6 remain largely in its claims that in order to develop reusable
untouched. If DoD procurement practices are software the developers must have the intention
altered, standards are developed, and incentives to do so and having a development environment
are adequately addressed, then innovative new that encourages production of reusable software
technology can be employed and refined to make is helpful. The latter claim is made on the basis
reuse a reality. that Ada, while it contains constructs in support

This paper discusses important existing of reusability, does not enforce such practice.
ingredients for supporting reusability, identifies The third problem, recognized by DCP. is that
key obstacles, and recommends strategies toward producing reusable software is not enough; peo-
resolving them. ple, other than the developers, must be able to

find the software in order to reuse it.
2. EXISTING TECHNOLOGY The DCP approach does contain properties

Sperry recognizes the potential of reusable which support reusability. The PDL developed
software. We appreciate the opportunities offered by DCP captures information, that is normally
by Ada?O to support reuse. However. through available during the design activity, and retains
our experience with Ada and Ada PDLs, we also that information in the encyclopedia in order to
recognize its limitations. We have also studied assist in the search process. These two features,
and exercised other state-of-the-art methodolo- along with the categories they have developed for
gies which give serious treatment to reusability. the abstractions which packages represent, are

useful concepts that, we believe, would be useful
in the final solution. We also like the fact that

Ada is a trademark of the U.S. Government (AJPO). the PDL constructs appear as Ada comments.

297

S..-- . . .. . . . . . . . . . . . . . . . . . . ..



F. What does bother us about the DCP faces. The basic ideas of this approach, access

approach is that the abstraction categories are not and provision, do provide more precise informa-

strong enough to support the application point of tion about a module's relationship to its sur-

view. For example, if an application needs, say a roundings. When reusability is the issue the '".

radar processing capability, which abstraction reuser certainly needs to know when these rela-

category (or categories) does it look for? In addi- tionships are violated. For example, using the

tion, we are not convinced that simple abstrac- provision concept does allow the designer to dis-
tions will work well in all cases. tinguish between the provision of the name of a

type and the provision of the representation of -'.

2.1.2 Formal Annotations to Describe the that type. In support of reusability this is cer-
tainly a promising feature, that cannot currentlybe accomplished with Ada. In addition this

The issue of how much a reuser needs to approach supplies tools that may be used to
know about the rationale for a module's design analyze the relationships and interfaces between
or the methodology used when it was produced, modules. There are, however, some situations
has raised the issue of where does this type of where tighter control is not desired.
information go? In response to this, more for-
mal languages have been proposed. Anna 2icc
(ANNA84) is one example of a formal 2.2 Separation of Logical and Physical Design
specification language. One view of reusability is that source code

Anna provides a vehicle in which informa- which implements a specific data transformation
tion about the design of a module can be cap- is often embedded in other types of code (e.g.,
tured and unambiguously expressed using ideas error detection and recovery, data declaration,
from boolean algebra and first order logic, input/output mechanisms, etc.) which destroys
Unambiguous expression of the properties and its reusability. The Distributed Computing
effect of the module does support reusability. In Design System (DCDS) implements a strategy
addition Anna offers the ability to analyze and for reuse based on this viewpoint (ALF081).
verify the part, because the annotation can be DCDS separates issues of logical module
compiled and executed. This is a useful concept design from physical design. The logical design
for software reusability since it is desirable (if not of a module (note: module refers to a logical
necessary) to be able to analyze and verify that algorithm and not to a physical structure such as
the "borrowed" software will work in its new sur- a procedure or task) which defines its algorithm
roundings. In addition, if the part needs to be and inputs and outputs is specified in one
tuned, its current limitations are precisely language. The collection of modules into physi-
described in Anna. cal structures such as procedures, functions,

There are, however, some sizable draw- tasks, and packages and the definition of the phy-
backs to the Anna approach. While this type of sical interfaces (e.g., parameter passing, global
rigor is certainly appropriate in some situations, it data) are specified in another language. It is the
becomes unacceptably difficult even for logical designs of modules that DCDS defines to
moderately-sized programs. In addition, it may be the reusable component.
require a skill level that is not possessed by the The DCDS approach allows the logical
majority of software professionals. module designs to be reused in many different

ways. In one system, a module may be a pro-
2.1.3 Tighter Control over the Relationship cedure. In another, it could be a task. In one
Between Part and System system, data may be passed from one module to

There is another point of view on the sub- another as parameters. In another, it may be
ject of how much needs to be known about a shared as global data. DCDS provides for a
module's relationship to other modules in a sys- smaller core of reusable software which may be
tern. as well as to its physical implementation. reused in more varied ways than is possible with
Some approaches claim tighter control is neces- pure Ada source code.
sary. A prime example of this point of view is As part of the DCDS development effort.,'6
Programming-in-the-Large (WOLF84). an interesting Ada experiment was performed

The general problem here is that there is a (ALF083). The purpose of the experiment was
difference between the design of one single to investigate whether logical designs, specified in
module and a system of modules and that the Ada, could be mapped into various physical
"all-or-none" rules of Ada packages may not be designs. This was done by specifying the logical
strong enough to control modularity and inter- invariant module algorithms as Ada fragments

298

|i :R



and using a macro language to specify the physi- Computer-Aided Programming (CAP) develop-
cal design. ment (BASS83) provides a pragmatic solution to e-

The Ada code, augmented by the macros, these weaknesses.
would then be processed by a macro translator The principles of their approach are: 1)
which would produce compilable Ada code. The most programs require little unique code and 2)
experiment successfully produced ten physical programmers spend far more time adapting and
variants of Michael Jackson's telegram problem maintaining programs than writing them

based on one single set of invariant Ada (BASS83, p.9). To address these two issues, the
specifications of the logical modules. The experi- approach utilizes the concept of "functionals"; an
ment demonstrates the viability of the DCDS enhancement of the notion of "frames" originally
approach for Ada programs. introduced by Minsky, and a "code adaption pro-

cess". The "functional" consists of a "template"
2.3 Application Specific Very High Level (the invariant portion of the code) and "meta-

Languages statements" (which describe the context-specific
information). The approach follows functionals

Another view of reuse is represented by to use other functionals in a hierarchical (tree-
very high level languages (VHLL). Commonly like) fashion. The code adaptation process then
used application-specific functions can be built traverses the tree, from leaves to the root,

into such languages. An example of this is used translating "meta-statements" to context-specific
on the Enhanced Modular Signal Processor source level code.When the root of the tree is
(JONEB4).

reached the conversion of the "functional" to a
Signal processing systems can be con- specific function (i.e., the finished program) is

veniently represented by data flow graphs. The complete. The system has been successfully used
arcs of the graph represent queues. The nodes for Cobol and Dibol implementations of actual
are either a predefined primitive operation (such commercial applications.
as a Fast Fourier Transform) or a subgraph. For The major drawbacks to the CAP aprocThe ajo drabacs totheCAPapproach
each execution of a node, each incoming queue
has an associated minimum threshold of informa- are: 1) CAP offers no method to locate theneeded part, 2) we have reservation about -"'
tion needed for the node's execution (e.g., the whether or not the "meta-statements" can be
queu must contain 5 entries). When every effectively utilized for embedded real-time appli-
inc ,,, ng queue for a given node has reached its cations, and 3) the distinction between logical
thre- i ld. then the node is eligible for execution, and physical design is not strong enough.

it is in the nature of signal processing sys-
tems that the operations represented by the
nodes of the graph are highly reusable. Many 3. OBSTACLES TO REUSING SOFTWARE
different systems can be developed by defining In the previous section we have identified a
new graphs which reuse the same primitive few of the currently available technical
nodes. The language used to describe the graphs ingredients which demonstrate experience toward
can be considered a VHLL for signal processing. making reusability achievable on a wider scale.

The VHLL approach to reusability However, as our choice of ingredients implies,
represents a very valid concept for this particular even the technical aspects of reusing software are
application domain. However, it may not be not solidified.
appropriate for every application domain. It is The section on Ada-related activities (i.e..
important that any standardization efforts which DCP, Anna, Programming-in-the-Large) points
focus on Ada should not preclude the use of out an interesting and very difficult to overcome.
VHLLs. fact that any approach to software reusability
2.4 Tailoring Source Level Code different, and valid, software development opin-

Although reuse of software is, in fact, going ions and practices that are in support of reusable
on to a fair extent, the method employed suffers software. The first thing that is needed is a
from three well-known weaknesses: 1) isolation definition of what constitutes a reusable part.
of reusable parts is ad hoc, 2) finding parts is a This definition must allow for variations of cer-
manual process and therefore time consuming tain notational constructs. For example, the
and prone to error, and 3) the result is several EFFECT concept can be addressed by ANNA in
versions of the same part, with minor some cases, the DCDS PDL in other cases, and
differences: all of which are maintained as if they even english in others. All points of view are
had no relationship to each other. The valid.

299



This uncovers an extremely important Also important to the notation is concise-
point: definitions and guidelines (rules) must be ness and clarity of expression. Once we retrieve a
developed, so that the variation in notation is component, we must be able to determine exactly

, properly selected, in order to make reusability a what it does. What are its limitations? How
" reality. We say definitions because the term accurate is it? How does it treat boundary condi-

"software parts" does not mean the same thing to tions?
all people. More importantly, as is clear from There should be a standard taxonomy for

. some of the discussion above (i.e., DCP, CAP), cataloging reusable components.
source text is not the only datum to be collected W",, We believe that standards should not try to
on a "software pat be withforce one single methodology for software

The second issue to be dealt with whether development on all DoD contractors. This would
or not a software part, developed by another not be accepted by the software development
company for another system, can be inserted into community. Instead, standards should be
a new system by a new "author" without any oriented towards defining standard reusable parts
change at all. There is considerable doubt that which can be used by many different software
there is, for embedded real-time applications, development methodologies.
such a thing as 100% reusability. It is vital that
this be both realized and accepted, so that "tun- Standards must be written in such a way as

ing" a part is an acceptable practice. This obser- not to prevent the use of new technology. As 
vation has some wide ranging implications in new and innovative technologies, such as
terms of maintenance, configuration manage- knowledge based systems, become available, the

ment, and the incentives offered to developers. existir standards should not inhibit its use.
Standards should not limit une state-of-the-art.

Software developers must be motivated to
attempt to reuse software parts. This will not Some other topics for %tandardization wi):

occur on a widespread scale without alteration in be discussed in subsequtnt paragraphs.
the DoD procurement process, including incen- 4.2 Establishment of a Government Controlled
tives and standardization of the definition of a
reusable part. Library.

While reuse of software within in org-niza-
4. STRATEGIES TO MAKE REUSE REAL tion or company is valuable. DoD has more to

The following paragraphs discuss the pri- gain from DoD-wide reuse. Today, when a DoD
*:.,. .mary issues which we believe must be resolved contractor wants to reuse software developed by ,.

before widespread reuse will become a reality, another company, this usually requires some kind -:

of licensing agreement.
4.1 Government standards concerning reuse of Executing these agreements is not too bad
software are inadequate, if you are only licensing a few large components,

Paragraph 4.3 of DoD-STD (DOD83) states such as an operating system. However, what

that. "the contractor is encouraged to would it be like if you wanted to develop a large
.-"" incorporate.. .software developed for other appli- system reusing hundreds or even thousands of

cations (reusable software) into the current components? The resulting legal hassles would
software design." Even this standard, intended to probably make this prohibitive.
become the future tri-service standard, places no We believe that a government operated
specific requirements on reusable software. It is software library would contribute greatly toward
left up to every contractor to do as he pleases. solving this problem. While there will always be

What should a reusability standard cover? some software to which companies will wish to
First, and most importantly, it should define just retain the data rights, it should be possible to

-- what a reusable component is. In what notation make contributions to this library attractive. This
is it recorded? We believe that they key feature could be done by purchasing the data rights of all

required is an appropriate definition of variation, contributed software for a fair price. Once depo-
It must be possible to modify reusable com- sited in the library, the software should be freely

-" ponents which may not exactly fit the need for available to all, or available at a nominal cost.
- which they are being retrieved but do represent a We must also consider who is liable for reused

close fit. software. If we contribute some software to thecls flibrary which we developed for, say, an "

300

r

,.: .. . ... -... ,............................... ......... ............. . .... ° . .. .



accounting system and somebody else reuses it in The SEI or similar organization level tech- -
an on-board system on an airlineer, are we legally nology insertion programs may be the best means

, . liable if the airplane crashes? This is a strong of effectively inserting this new process.
incentive for us not to let anyone else near our
software. Thus, we believe that depositors to a 5. CONCLUSION
library should be released from liability. There is If widespread reuse is ever going to become

'1 a need to reach an equitable balance between a reality, DoD must take the lead. So far, it has
government needs for reusability and its contrac- been left up to individual contractors to do as
tors' constitutional property rights, they please, or do nothing at all. The result is

4 n o Sthat widespread reuse remains only a dream.
4.3 Incentives to Reuse Software The Applications Tri-Service Working

What does a beD contractor stand to gain Group of STARS is in a good position to remedy
. from reusing software? Since his productivity the situation. With DoD leadership and strong

will be higher, he may be able to underbid his industry commitment to the working group we
- competition. However, since his costs are lower, are confident that the issues described in the

so are his revenues and profits. In a way, current report, plus the many other issues involved, can
DoD procurement practices provide a strong be resolved.
incentive not to reuse software.

Another problem can occur during the pro- 6. CORPORATE EXPERTISE AND
- posal process. If a bidder proposes a substantially EXPERIENCE

lower price than the competition because he The sperry Corporation is known
, intends to reuse a large amount of software, what throughout the world for reliable, ruggedized,

happens to his cost credibility? He could con- militarized computer systems. These systems are M
ceivably lose the contract because his bid is too designed for all kinds of applications in all

- low to be considered credible. environments. As a major supplier of software to

We believe that a combined "carrot and military and civilian agencies of governments and
stick" approach could provide the proper incen- to commercial users, Sperry has continually
tives. Standards could provide the stick. They expanded and updated its facilities to maintain
could, for example, require a reusability review innovative capabilities for producing higher qual-
somewhere in the software development cycle. ity software and increasing productivity.
This could be a separate review or possibly incor-
porated into the preliminary design review. It 6.1 Management and Measurements Perspective
would serve to ensure that the design incor-
porates reusable components whenever possible. 6.1.1 Software Cost Estimation
Such requirements should be incorporated into Sperry has employed industry recognized
DoD-STD-SDS and MIL-STD-1521B. software cost models for proposal and manage-

Incentive fees for reusing software could be ment estimation purposes since 1979. Sperry has
the carrot. Lower costs via reuse of software intimate practical working knowledge of the
should result in higher profits. SLIM (Putnam model, QSM, Inc.) and PRICE-S

(RCA) cost models. Sperry has studied, and on
4.4 Technology Transfer some occasions uses the Jensen (Hughes) and

Simply providing standards, a library, and COCOMO (Boehm, TRW) cost models. Today

incentives would help, but we do not believe that these models are used on a regular basis, both in
it is sufficient. A technology insertion plan must the estimation of new development projects, and
be developed. A plan for using reusability should to gauge the status of work in process.
include appropriate training of all participants. 6.1.2 Software Complexity Measures

Once proposed standards, etc., are
Once proosed stadard. ec. *areSperry has experimentally pursued software

developed, they should be tried on pilot projects.
The results of these projects should be used to complexity measurement on major sottware
improve the standards. If the results are posi- development programs.

tive. then they will be a powerful inducement for For example, Halstead complexity metrics
DoD contractors to incorporate this technology were implemented on a real-time avionics system
into their organizations, developed in PASCAL. This data together with

301

VF



management records of production effort were Sperry is developing a distributed command
used to establish a project spectrum of complex- and control system and establishing the .

ity versus production difficulty, down to the pro- facilities to support full scale development -
gram unit level, and life cycle maintenance for CPF. Opera- ,.'

In a ground-based control center being tional and simulation software with associ-
d In Mround-a he conarolste merics ated documentation are being developed fordevelped i CMS-M theHalstad mericsthis system which features a variety of sub-:-.-

extraction was supplemented by a measurement system ich feature v re o -
of McCabe cyclomatic number metrics. A systems including weapon systems, fire con-comprehensive metrics analysis will be performed trol, meteorological systems, ESM and . .,
comehenive moetis anlysis willbeperECM systems, and communication control
when this project is completed. and monitoring.

On a number of major projects, error and (3) Enhanced Modular Signal Processor -np
error rate data are being regularly gathered to (EMSP)
further infer empirical measures of software com-
plexity. EMSP is a multiprocessing network, pro-

6.1.3 Automated Work Breakdown Structure grammable array processors and special pur- -,SperryAhasmdevelopedBanaautomatedu workepose devices to support high performance
Sperry has developed an automated work signal processing applications for the U.S.

breakdown structure (WBS) generation program Navy. This programmable system will sup-
as a support tool for software development pro- port a very high level user interface
jects. Downstream planning for utilization of this oriented to the application engineer.
capability includes integration with: I) work plan- 6 A t f e s p
ning network tooling, and 2) cost modeling 6.2.1 Application of Unique Tools and Capabil-

software. Complete WBS analysis is considered ities
to be a necessity for effective software cost esti- With its background in the development of
mation and project planning command and control systems, Sperry has

developed tools in response to application needs.
6.2 Application Perspective Sperry's experience in simulation and modeling

A broad view of the domain of DoD appli- of weapons systems is one example of important .
cations is essential to understanding the issues application perspective of APSE tools. Examples -
involved in reusing software. Sperry is a leader of Sperry experience in this are alone are:
in the development of real-time tactical command
and control systems, logistics support systems, (1) The ADAM model is one of a series of
communications systems, and intelligence sys- analytical modeling tools developed for the
tems. Sperry has been a developer of DoD appli- evaluation of interconnects for distributed
cation software for command and control, tran- systems processing.
sportation. and communications systems for (2) The AQUADS model is an analytic model
years. A few examples of Sperry's current con- for investigating interactions in distributed
tracts demonstrates this broad base: database management systems.

(3) The System Performance Assessment
(1) Marine Air Traffic Control and Landing Model (SPAM) was developed as a general

System (MATCALS) purpose command and control simulator

based on Sperry's experience with weapon
Sperry has been associated with MATCALS system modeling and simulator develop-
since 1973 in this system consisting of air ment. It was implemented in SIMSCRIPT
traffic control, communications, circuit 11.5 to be compatible with the majority of
switch, and display software. Other system existing service owned weapons systems
features include high resolution color simulators.
graphics. direct radar interfaces, local net-
work interfaces, processor controlled circuit 6.3 Environment Builder Perspective
switches, and digital voice conferencing For the past several years, Sperry IR&D has
units. been building tools to support Ada. These -

(2) Canadian Patrol Frigate (CPF) include a prototype compiler and run-time sys- . -

tern, a Code-Geneiator Generator, reusable !L.

302

* • ."- .



._ r.W-_-_ r

. packages, and a hardware architecture simulator. target computer. This involves run-time model-

Sperry develops almost all of its software ing, distributed software, and hardware

systems using hosted tools, both batch and modification for support o Ada.
interactively, through remote terminals. These 6.3.3 Ada Support Tools
tools (editors, compilers, retargetable compilers,
design aids, debug packages, instrumentors, As an IR&D activity, Sperry developed a
documentation systems, etc.) give Sperry the library of software development tools to support
capability to provide customers with a unique APSE components. An example are packages
expertise in the design and utilization of tools providing a set of IDL tools. These tools have
from the perspective of a high technology, pro- been designed and implemented to manipulate %
duction oriented, major defense contractor. the data instances of the various user-defined
MTASS and NSW are examples of Sperry capa- data structure types. These packages were used
bility to create and sustain environments, by the Hierarchical Processor (HSP) of the

VHSIC Phase I program.
6.3.1 Ada Compiler and Run-Time Research

6.3.4 Hardware SimulatorIn an earlier [R&D project. Sperry
developed a compiler for a subset of Ada and The architectural extensions project is
also developed a machine transportable simulator defining and evaluating modifications to the
for executing the generated code. The simulator AN/UYK-43 computer ISA to enhance its sup-
ran on a Sperry 1100 computer and supported port for the Ada programming language. This
hardware features that greatly aided the execution effort includes development of a software simula-
of Ada programs. tor for the AN/UYK-43. Ada is being used both

as a design and implementation language for this
6.3.2 Ada Code-Generator Generator (CGG) development. The simulator design facilitates ,

modification to simulate other ISA's.As a result of Sperry's experience with
compiler developments, Sperry is conducting 6 M e s l p o
research and development directed toward 6.3.5 Machine Transportable Support Software

automating the construction of code generators. System (MTASS)
The approach is based on the following observa- Sperry has many years of experience in
tions on recently developed compilers. rehosting software on a wide variety of host

machines. A notable example of such a hosted
* (1) The implementation of the code generation system is the Machine Transportable Support

Software system (MTASS). MTASS is an 1100method includes the generation of preset hse otaesse htpoie rgatables which can be automatically produced. hosted software system that provides program .Q
development tools for the Navy standard mini-

(2) The code generator design is not dependent computer, the AN/UYK-20, as well as the Navy
upon a particular intermediate language standard avionics computer, the AN/AYK-14.
structure. MTASS consists of the following:

(3) The code generator to be produced is
specified in an object independent manner. (1) CMS-2M Cross Compiler

The input to the CGG describes the forms (2) FORTRAN IV Cross Compiler
the intermediate language would take in being

(3) Macro Cross Assemblertransformed from Diana to the target computer
object code. The form of the code-generator pro- (4) Loader and System Generator
duced by the CGG is that of one or more (5) AN/AYK-14 Simulator
processes with, by a template matching process,
cause the data transformation through action rou- (6) AN/UYK-20 Simulator.

tines coded by the programmer and supplied to This set of software tools (which is
the CGG. A skeleton code-generator was pro- highlighted by the CMS-2M compiler) was
duced for the AN/UYK-43. designed. implemented, tested, documented, and

Sperry's current efforts lie in hosting the is currently maintained and configuration-
CGG and its outputs and in specifying the managed by Sperry. In addition, Sperry is

deployed system software environment on the responsible for transferring MTASS to a number
of other host systems including IBM 360/370,

303

".'"- . -. . . . . . . . . . . . . . . . . ..-. .. . . . . . . -..



CDC Cyber, DEC, and PDP-1O.A key concept of Ada language efforts. Ada training has been
the MTASS system is to use the Common Inter- obtained by both application and environment
face Routine (CIR) to localize the host depen- developers through external sources such as Dick
dent portions of the MTASS system. Bolz, Ed Bernard, and ALSYS Ada launch sem-

inars.
6.3.6 National Software Works (NSW)

National Software Works (NSW) is a net- 6.5 Professional Society Activities
work operating system which maintains objects Sperry is actively involved in many related
for users and provides access to these objects areas of support to the DoD through professional
which reside on different host computers con- societies, such as the IEEE, EIA and NSIA. In
nected to the ARPANET. Sperry produced the some cases, support is provided directly to DoD
design of the 1100 tool bearing host software. agencies, such as the APSE E&V task of AJPO
This experience utilized vast existing experience and the reviews of STARS DIDS for RADC.
from other tool bearing host developments on
UNIX, TENEX, TOPS 20. IBM 370/VS and 6.5.1 Participation in EIA Computer Resource
MULTICS which created additional expertise in Committee
the area of inter-tool data interfaces, process to The EIA G-33 Computer Resources Task
process interfaces, and end-user interfaces, group was formed in 1976. That year, Mr. J.L.

Raveling became the Sperry representative to the
6.4 ADA Language Proficiency G-33 CM/DM committee. Since that time, Mr.

Sperry is actively involved in the DoD's Raveling, a staff systems manager with Sperry,
common high order language effort, Ada. Sperry has been a highly active participating member in
staff members have actively participated in the G-33 task group, and in several years has
reviewing the WOODENMAN and IRONMAN held positions of vice-chairman and chairman. In
requirements documents for Ada and have con- 1983 the EIA separated non-CM/DM computer
tributed as Ada Phase I and Phase II evaluators, resources activities from G-33 in forming the G-
Sperry has also contributed to the Ada effort at 34 Computer Resources Management Commit- - -

Irvine, Fort Walton Beach, and Boston. Sperry tee. Mr. Raveling was G-34 vice-chairman in
has also been active in providing the high order 1983, and was elected chairman in 1984. Current
language working group with comments and task areas of the EIA G-34 committee include:
suggestions on the PEBBLEMAN, STONEMAN
and MIL-STD-1815A documents. (1) Next generation computer architectures

Sperry has established a task force to (2) The STARS program
integrate with the Ada language and environment (ti
efforts. A team from Sperry has participated in (3) Review of the JSSEE Operational Concept
the Ada Test and Evaluation phase and has Document, and the proposed military stan-
reported test results and language issue reports dard for software support environments
and comments. (4) The Software Engineering Institute

For the Test and Evaluation phase, the (5) Support to computer resource management
team selected a typical display program from the for the Joint Logistics Commanders
set of TCCF (Tactical Communications Control (6) DARPA Strategic Computing and Strategic
Facility) application programs and reprogrammed Initiative program
it in Ada.

(7) DoD HOLS (including Ada)Sperry personnel have attended Ada
language courses taught by the Ada language (8) Software quality assurance and reliability
design team, and in turn, have presented in- For the past seven years Mr. D.M. Erb,
house Ada courses. director of software QA. has been a forceful

Sperry personnel attended the Ada mover for software QA in the G-33. and subse-
Language Test and Evaluation workshop in Bos- quently G-34. groups. Mr. Erb is the former
ton. and participated in the Ada Language Chairman and is currently a member of the G-34
Environment workshop. software QA committee. This subcommittee has

played a major participating role in the rewrite ofSperry Ada language capability has extended existing, and development of new software QAbeyond the core group involved in these early

304
-~ . -. . - --- ---. *. i~-'-.... - .. .*-..'-- -



and other computer resource military standards (2) Joint Services Software Engineering
and handbooks. Environment (JSSEE), Operational Concept

-" )"i " Sperry has played a strong active role in
computer resource CM/DM for over eight years. A member of our technical management
Currently Mr. J.M. Anderson, manager of sys- staff served as a co-chair of the Software Support
tems CM/DM, is a voting member of the G-33 Environment (SSE) panel at the Joint Logistics
committee for CM/DM. He is supported by Mr. Commanders (JLC) Orlando I workshop. The
D.R. Willi, principal data manager, in the DM SSE panel report made direct contributions to the
specialty area. Current activities of the G-33 JSSEE activities.
CM/DM Committee include:

6.5.5 DoD-STD-SDS
(I) Preparation of a DM overview guidebook Sperry has played a leading role in the
(2) Identification of needed CM bulletins Q.V. review and coordination of the JLC's new

Anderson - lead) Software Development Standard (DoD-STD-
SDS). This support has been provided over the(3) IEEE software CM standard last two years and encompasses their major

(4) CM plan DID improvements reviews of this evolving standard.
(5) CAD/CAM impacts on CM/DM 6.5.6 The International Society for Parametric
(6) Identification of needed DM bulletins Analysis
(7) CM plan bulletin. Mr. E.O. Tilford, director of Software
6.5.2 APSE E&V Task Group Engineering, is an executive member of the

M.J. Meirink and R.E. Sanciborgh are dis- International Society for Parametric Analysis, anM.J Merin ad RE. andorh ae ds- organization dedicated to the study and ...
tinguished reviewers of the APSE Evaluation and rgizato dedica t the styan

Valiatin Tak Goupof te APO. he ur- refinement of significant measures of estimationValidation Task Group of the AJPO. The pur- within the scientific and engineering disciplines.pose of this task group is the development of the

requirements. criteria. and technology to be usedin evaluation and validation of Ada programming served as chairman of the software policy andi e nv ionn s Aldtiona , bprogramming applications committee. He is presently a
b support environments. Additionally, both are member of the society's board of directors, and is ,

members of the task group's requirements work- chairman of its ways and means committee.
ing group.

Representing the society, he has been an active "
6.5.3 STARS Measurement Task Force lecturer in software cost estimation. Mr. Tilford

also works in the fundamental research of
Mr. R.E. Sandborgh participated in the software cost modeling in collaboration with Mr.

review and was leader of the general issues com- Larry Putnam, a nationally recognized expert in
mittee whose task was to ensure the effort was the field.
properly focused. This committee recommended
a major reduction in the number of DIDs and 6.5.7 IEEE Ada PDL Working Group

"*: focusing of data collection for specific purposes. From its beginning in 1982. Mr. M.J.

6. Meirink has been a member of the IEEE Project
moni-SE830. Ada Program Design Language Working

Sperry has actively supported and moni- group. Mr. Meirink supervises the tools and
tored the JSSEE development during the past methodology organizational unit, and is project
year. Members of our technical staff have parti- engineer for the software engineering environ-.-""
cipated in the JSSEE Industry Team and in the ment IR&D program. A draft of the IEEE guide-
review of the: lines has been released for review. Mr. Meirink "

is currently a member of a working group sub-
(1) Plan of action and milestones for definition committee charged with focusing upon specific

and preliminary design of a Joint Services environment issues.
Software Engineering Environment
(JSSEE). January 1984

305

:.'"+X"+ :- , -''-. . ..".-"."."."".".-. .""- '.". . . . ..•.. ... . . .. .. . . . . . ._:_ -. ._ .= .. .. :. .. . . :,_: .. _. . ..... . . .-. . . .*. . . .. . . . .-



6.5.8 Software Reusability Study (5) DCP84- Steve Parish, Andres Rudmik,
- During the summer of 1984, Ms. J.E. DCP--Experience in Bootstrapping an Ada

Mortison. Software Engineering Staff Consultant. Environment, GTE Communications Sys-
served as group leader of the NSIA study task terns R&D.
ISTG 84-2, "Systems Engineering Aspects of (6) DOD82- Department of Defense, Strategy "
Software Reusability" for the U.S. Navy. This for a DoD Software Initiative, August 1982.
study was initiated at the request of the Deputy'--"(7) DOD83- Department of Defense, Pro-
Assistant Secretary of the Navy for C31. Current posed Military Standard Defense System
Navy weapon system computer programs were Software Development (DOD-STD-SDS),
examined to determine factors and issues relating December 1983.

- to reusability. Recommendations for the promo-
tion of reusability were a part of the task group's (8) JONE84- D.E. Jones, W.J. Shellenbarger.

, final report. EMSP Common Operating System, A Tool
for Developing Real-Time Signal Processing

R E CSystems, Proceedings of the 1984 Technical
REFERENCES Symposium, Sperry Corporation, May 1984.

(1) ALF081- M.W. Alford .E. lrby, J.E. (9) MAUR81- Proceedings of the Software

Scott.Workshop Joint Workshop Logistics Con-manders Joint Policy Coordinating Group
Hardy. Distributed Computing Design Sys- otuaon Computer Resource Management. "--
tern Description, TRW Defense and Space[ ! Report of the Panel on Software Reusabil- -

Systems Group. August 1981. ity, PANEL E, Monterey, California, June
(2) ALF083- M. Alford, H. Hart, E. Miller. J. 1981.

Scott, D. Smith. Distributed Computing (10) WEIS- Leonard R. Weisbert, A New
Design System Final Report, TRW Defense ADand Sace ystes Grup, une 983.Approach to Lowering DoD Software Costs. ,.
and Space Systems Group. June 1983. Aerospace and Defense Group, Honeywell,

(3) ANNA84- David Luckham, Friedrich W. Inc.. Minneapolis. Minnesota, date unk-
vonHenke, An Overview of ANNA A nown.
Specification Language for Ada, Technical
Report No. 84-265 Program Analysis and (11) WOLF84- A.L. Wolf, L.A. Clarke, J.C.
Verification Group Report No. 26, Com- Wileden, An Ada Environment for
puter Systems Laboratory, Standford Programming-in-the-Large, Software
University, September 1984. Development Laboratory, Computer and .

(4) BASS83- P. Bassett, J. Giblon, Computer Information Science Department, Univer-

Aided Programming (Part 1). SoftFair. A sity of Massachusetts. 1984.

Conference on Software Development
Tools, Techniques, and Alternatives,
Proceedings, pp. 9-22. Arlington, Virginia.
July 25-28. 1983.

306

. . . . . . . . . . . ..



• - RESUME

RICHARD A. HOWEY

Principal Programmer
Sperry Corporation, Defense Products Group

Richard Howey is currently assigned to the Ada Department at Sperry DPG. He is involved in the
specification, design, and testing of Ada programming support environments. He is participating on the
Sperry 1100 Ada Compiler System testing, the ALS/N proposal for the U.S. Navy, and a study to
define an Ada environment for the U.S. Air Force's Project LIBRA.

Prior to the assignment, Mr. Howey spent nine years as a programmer/analyst, and later as a
development team leader, in Sperry's Air Traffic Control Systems department. In this capacity he was
involved in large scale real-time embedded software development. He also participated in many related
studies, proposals, and IR&D activities.

Mr. Howey received a BS degree with highest honors in Mathematics and Computer Science from
Lawrence Institute of Technology in Southfield, Michigan in 1975.

3..-

I'-



L...

0i C

C)J I- J I- -.

= C
c CD = l,

3c C/3

I-I

wL Lii C

= WL -14:

CD - I- .

CL C
- ZLi-

0 n

Cl, -

Lii I308



-j co

9-e

LLJ 0A

LA.. U.I

= LUJ

Li.J .' .

009



-i co
cl)cn

C-,

w w

LU - -U

cn --

qc u

U- -ccL
LU4 .4c

4c LL

oL 0A (0 3

.5,.



I

Q LL
(n En

>. LuJ

Lu -

LL
C-D

I- 0 0



L42b

-LJ

LU

-J

C../)
C/ 0.L

LUI
W -CC C 0.

CC/)

LL. C.. 0 L Li -

LL. 0L _ I1 ..)
U..LL -.. J ~LLJ L

en 0c 4I- LU > Uo C/) ~ 0.3 i.I=

(D 0L - LLD W 0 L (n
Lu = P- Cl) - x = 3c

LUJ LU QL 4 Cl) Lu LI qc = LU
C.J C C LL J cc

UJ OJct ) L
(D I-- ac 3c~

C). -CC _j. L 0
LA 0j CL (D _j L~~C 4m U. 0.-j

LU -cc.. >I- > LLE Z LL
CDC

312



LI

CD,

C.,3

C

LI
-L zL

No0

31



CLL

~LLJ ....JO
C/). -cc

-j U
U-~~ cm I-

>. CD-
w ui -.

= ...

LO-

LL C,)
ex C/) I- I

. . ... .



P..

W C-)C/)

LUI

-

LUI

LUJ

1--# 0-0 --

Oc LU =-Co ~ - ~W

JL

315

. . . . . . . . . .. . . .



LUI-a

~LLU

LLLU

C.'3

LJ

cy- w
LU -j

o~ = /)

C) C.. C,
0i -L 9U L

-y I- = - C,

cc LUI ca= C

U- U- - = = (M

0< CU '-' I.- ~

C', cc <L LU CL.

C) ~~ I- L CQ

o ~ ~ C - 0 CLL

Cf CL LUI
C) -L-c L L L 1=

w- L U L LU

cm0 LU >- C=

LUL

JLL

316



LU

C/,h

LLU

C)

CDC/

o -

Cl L -

-c -cc

Cl) - LU
LLU

0 0

317 Cl



LL,

cnc

(n,0

IL

LUJ

9-1

In LU
+U -A -j C3 N

w LL. >0 cnL

LLJ ~ ~ LU n m 9
+ ~ ~ ~ ( C/).. /) (

CC/3/
0A w C)

-J 0 J CUC

%. .,

318



LU 17

-j 0

CD,

LUc

U- L-i

LU

.- CD LU
CD LU

CLC,

LU Qv

I Ui LU

ocon
CD CDL
0k 0

831



u-,S

LLJo
LIIJ

LLLU

LUJ

C.CD

C) LUI
CD-

CO

CD) C) z L w
-) -

0- J CD

(.J <

U- c.. ) LL0

0 L d, L

CD CD L
MC

320-



SEARCHING AND RETRIEVAL FOR
AUTOMATED PARTS LIBRARIES

John D. Litke

Grumman Data Systems Corporation

I.o

The search for methods that encourage the of both completed programs, packages, etc., as
reuse of software is usually motivated by the well as the searching and retrieval of algorithms.
need to reduce cost and increase productivity in It is our contention that the classical data base
the construction of software. This desire has a approach is not sufficient. Rather we require a
long history that goes back at least to the SHARE method that describes the organization of our
group and continues as a dominant motive in the knowledge. as well as the knowledge itself. We
design and adoption of the Ada language. In propose that a delineati' n of the knowledge to be
recent years. an increasing interest in reusable organized is required before the organizing
software has come from the desire for rapid pro- machinery can be designed and constructed. ,
totyping. One approach to rapid prototyping is The classical approach to a searching and '

the construction of elaborate application genera- retrieval problem is to design a database and
tors. but we now know that such are very difficult inquiry language, usually with one of the many
to build for even a narrow span of application. A commercially available database systems. A par-
more promising approach is to build software tial list of items we would desire in such a data-
parts that "fit" easily together, permitting the base is:
rapid assembly of parts into a working whole.

Libraries of reliable software have been I--

with us for some time. The IMSL library of Routine name, identification number,
mathematical routines is often cited as a good version, classification
example of a difficult art. Why are such libraries codes and sub codes, key words.
so few and so rarely used? Common excuses author, responsible
that we have all heard are: organization. etc.

I didn't know that the routine was available. Environment:
The routines lacks this or that feature.

Machine, compiler version that
Aside from the not invented here bias to the program has been tested on,

such feelings, the first reason clearly points to a 1/O. storage and peripheral
need for better searching and retrieval methods requirements. usage restrictions.
to encourage use of collections of routines. Any- dependencies on other program
one who has searched the SHARE or Collected elements.
Algorithms of the ACM will attest that the Thes
indexing method never seems to match the prob- spe secitems are typical of the set of
lem statement. The second reason can be over- specifications one will find in most existing
come if we can find a way to store and reuse libraries.
algorithms rather than programs or subroutines. However. a useful software library will con-
Ada packages and generics are not quite what we tain thousands of items, each with many tens of
want, but rather we need fragment specifications keys. Searching through such a large space of
in Ada that are dependent on type and variable key words is not implemented effectively in
elaboration. (I) Rather than trying to solve the todays database systems. For example. suppose I
second more difficult problem, this position paper injure my arm and suspect that I may have bro- p- -
discusses the requirements for a searching and ken a bone. I need to select a doctor for treat-
retrieval mechanism that will allow efficient use ment. so I look up doctors in the yellow pages.

321

S. . . C ., , * . o , . , - % ° " o- .



There is no such entry in my yellow pages. I try ones initial reaction is that the question is
MD's with no success. Finally, I will find it unanswerable. However, if close means "in my
under "Physicians and Surgeons". This well know zip code", then the address information will
naming problem is bearable when there are a few suffice. Further, if the telephone exchange
commonly recognized synonyms, but now when matches my own, the doctor is probably close to
there are many. In the list of doctors I need to me. This example illustrates that the model used
know which classifications will treat my injury, to request information will never exactly match
Osteopaths? Internal Medicine? Orthopedists?. the information model in the database, so that
The point is not the search cannot be done, but powerful inference mechanisms are required to
that it is onerous enough that special motivation create a dialogue with the user during the search.
or special training is required. Such a cir- The notions of inheritance and hierarchy for
cumstance is not conducive to wide spread use of organizing such variety can be helpful for reduc-
software libraries. ing the storage required and providing the index-

Simply searching on static properties is not ing approach for such a query.
enough. We also must ensure that the selected With thousands of possible key types and
element satisfies behavioral requirements as well. key values, the user will require the ability to
Behavioral specifications require precise informa- find elements that are "like a" known element.
tion on the transformation functions or rules that That is, high level searches must allow a user to
the routines implement, the types and variables gradually refine the specificity of his or her
that are imported or exported and their meaning. request, not by specifying a host of new key
To assess the robustness of the library eiement, ranges, but gradually refining the range of keys " "
the user would want to know the exceptions pro- considered as a class. This notion of "like a" and
pagated into and/or out of the element, timing class can become extremely subtle in an ideal
constraints, the range of input values that are system. For example, if algorithm is an impor- "
handled "correctly", etc. Reliability characteristics tant search concept for a particular query, than an
are also important, as are behavioral differences Automatic Message Handling system that con-
on different hosts. tains a transformational grammar is "like a" com-

An important difficulty with this wealth of piler and a user than may need to narrow the
information is that, depending on the application, scope by size of possible symbol table, runningalmost any item could be a search item. Classical speed, etc., before implementation distinctions i'-.

almstan itm oud b aserchitm.Clasial between the AMH and compiler system become - Ldatabases work well when there are few keys and
many elements per key, but in this case there are important.
many multiple keys and few items per unique The large variety of types indicates another
sets of keys. Further. the range of keys is not difficulty with the classical database approach.
stable. For example, we would surely want to Such databases require that the taxonomy of the
key on the types of the input and output parame- information they contain be stable and specifiable
ters. However, types in modern languages are so that the schemas on which they are built can
meant to model real world items, so that the span be constructed. Further. the range and syntactic
of types is now conceptually infinite, rather than values of each indexable item must be known
4-10 different types contained in older languages. before the schema can be built. Because a

classification scheme is expected to be extensive
Searching for items with a large number of

keys can yield the selection of hundreds of items and detailed, we require a means of maintaining
if only the value of one or two keys is specified. the underlying classification machinery in the

face of constant change. This implies that our
A critical observation here is that we do not want
to be more specific by supplying several addi- database machinery cannot contain the
tional keys, but we want to supply as many keys classification rules in the schema. but must con-
and values as we know, rank the keys according tam the classification rules in the database itself
to our own particular values, and ask the as well as the data that the rules classify.
mechanism to select items that "best" match the Another requirement that must be
criteria, addressed is missing and inhomogeneous infor-

T t t e i e l nmation. (2) We require the means to specify'I" To return to the medical example, in my

search I want to select doctors that are 'close" to "default" or "probable" information for missing
my home. In the particular database of the yel- items rather than "not available". Bureaucratic

low pages. there is no notion of distance so that rules are not sufcient here. for we envision a

322
p-. -i J

--p



searching/retrieval mechanism that is adaptive. (4) The mechanism must accommodate highly
If we change the meaning of a small, medium, or volatile schemas.
large string, we cannot possibly go back to all (5) The mechanisms must enable searches by
authors or the original source to reclassify all analogy or "best match criteria.-
strings. Thus the retrieval mechanism must deal anae y rdbs omphecite ra
with old and new string classification systems, The variety and complexity of program el-
possibly of incommensurate measure. Further, ments and algorithms makes the ideal solution to
for searching mechanism to take advantage of searching and retrieval beyond our present abili-

fmk

missing information, it must first know that the ties. However, graceful growth toward the ideal
information exists, and then be able to take will ensure that resources applied to present
advantage of anything that is known about the problems are not irrelevant to the more complex
information. For example, if I do not know what future. Several steps suggest themselves.
machines that a program will run on, I still may
know that it will not work on a certain model. (1) Define a preliminary taxonomy of software
One approach is for a database to store all known units and a second, allied taxonomy of algo-
negative and positive information about a key but rithms. The aim should be to scope the
this requires a great dezl of space. In the absence richness and variety that is required with a z
of information on what machines will not run on. definite tendency to idealism rather than
do I conclude that the program will or will not practicality.
work on a specified model? (2) Define ideal inference mechanisms required

From this brief discussion we can see that by the taxonomies from 1. above.
we not only require a rich classification scheme. (3) Select subsets of 1 and 2 as subgoals that
but also a rich inferential engine. The structuring can practically be constructed with todays
mechanisms being used by Al researchers such as equipment.
semantic nets, first order logic. frames, etc. seem
promising, yet they also have difficulties. For (4) Provide guidelines to software developers
example, many of our relationships do not follow for documentation and classification of early
first order logic, (3) and yet that logic is the basis candidates for the software library so that "

of many experimental reasoning systems. Class many candidate elements can be entered
membership systems have not found effective and the first systems given a significant.
means to allow multiple class memberships. realistic test.
Refining of class membership criteria as we References
describe sub-classes is also a known deficiency in
some implementations. Further, since the com-
plexity of a useful classification mechanism is ii) Bentley. J.L. and M. Shaw, "An Alphard
large, we need a way to specify a sample object Specification of A correct and Efficient
and search for all others that are "like it". The

methds f custe anlyss an prjeciveTransformation on Data Structures". Procmethods of cluster analysis and projective IEEE Conference on Specification of Reli-
geometry might well be useful. able Software, April 1979, rp 222-237.

In summary, a useful searching and (2) Moore. R. "Reasoning about Knowledge
retri.:val mechanism for reusable software must and Action", Technical Note 191, Artificial
have the following characteristics that distinguish Intelligence Center, SRI International,
it from contemporary database systems: Menlo Park, 1980.

!3) Hewitt. Carl and Peter de Jong, "Open Sys-
(1I The mechanism must 13e efficient with data tm~ n'nCneta oeig.Botht a mn kysad e rcod prtems', in "On Conceptual Modeling". Bro-

that has many keys and few records per die, M. L. Mylopoulos. J. and Schmidt. -.
unique key combination. W. eds. Springer Verlag, New York, 1984.

(2) The mechanism must accommodate succes-
sive refinement style searches with many
keys specified aoproximately.

(3) The mechanism must accommodate non-
monotonic key relationships.

323

~~~~~~~~~~~~~~~~.... -. .....-.--.-..... -".-"-.".... ..-... +-.. .• . ... ..... -. =... -' N,-".


Grumman Data Systems is actively equip- At present, Grumman Data Systems has
ping itself to effectively develop software in Ada. obtained and used Ada on DEC VAX 11/780 and
This requires that we obtain expertise, hardware, Data General MV8000 machines using compilers
and extensive training capability to make the from NYU, DEC, DG. and Telesoft. We are
transition to a new language as smooth as possi- providing time on this equipment for key
ble. For several years, we have participated members of the Grumman Data Systems
jointly with Grumman Aerospace in the AdaTec development team to sharpen their skills in Ada
activities and the Kapse Interface Team from so that we will have knowledgeable and effective
Industry and Academia (KITIA). Over a year programming leaders. p
ago, we established a development team that we
call the Ada Lab to lead the company into the As the corporation addresses the task of ,- ,'
new technology, integrating Ada skills into the entire organization

the Ada Lab team continues to extend our grasp
The Adia Lab has constructed a major of the new language. We have a program under-

software system that simulates the in-flight refu- way to refine and extend our Ada design metho-
eling of aircraft by a tanker, including not only dology so that it might be an effective tool on
the control of the actual fuel transfer operation. Ada projects. This program will apply the metho-
but also the communications to establish refuel- dology to a second demonstration project and
ing need and the navigation required to attain a attempt to quantify the utility of the method by
rendezvous. The simulation was chosen to the end of 1985. A second team is investigating
explore the implications of Ada on program the issues involved with moving Ada code from
design methods. to test the independent tasking one machine to another as we continue to acquire
capability of Ada. and to understand the practical additional diverse hardware and Ada software
implications of the very strong typing in Ada and systems. A summary document is expected by
its impact on inter-task communication. The the middle of 1985. A third team is determining

resulting system contains over 15,000 lines of feasible approaches to establishing a library of
Ada and runs on the Data General Ada Develop- re-usable modules in Ada to further enhance our
ment Environment with DEC color graphics Ada productivity. This team expects to
display hardware. thoroughly understand the complex issues and to

To promote the effective production of uni- recommend a long term research and develop-
form Ada code. the lab has produced a 47 page ment plan by the end of 1985. We expect to par-
Ada Style Guide that is consistent with modern ticipate with others addressing this difficult prob- L
software engineering methodologies. The Ada lem via the DoD STARS program. Finally, we
Lab provides seminars to introduce managers and are exploring the issues of using Ada in a fault
developers to Ada. These have ranged from tolerant environment by chartering a team to
brief one hour synopses to comprehensive four develop an Ada compiler on a fault tolerant
hour training sessions. In February 1984, we will architecture.
furnish all software managers in the company By these and other efforts, Grumman Data
with an Ada Fact Pack that contains an overview Systems intends to have the ability to effectively
paper, the Ada Style Guide, the Ada Language apply the new Ada language to a broad range of
Reference Manual, an Ada glossary, a guide to modern software problems.
the Ada literature, a guide to Ada training
resources and an index of our own extensive Ada
library that contains over 100 catalogued items.

324

. .,. .-.

,- . ,

,+ -+ -o . • . .- • +. , . . • - .- . - . . -. . -- - - - .• . - _-. + . - - '' •-. , - g

RESUME

JOHN D. LITKE

John Litke's professional interests include programming languages, software engineering metho-
dologies, human factors, fault tolerant software, and optimizing algorithms.

j EXPERIENCE__

Grumman Data Systems Corporation - Assistant Director for Software Technology - Present

Responsible for research and development programs in advanced languages (including Ada) database
management and software tools. .

Photocircuits, Manager of Computer Engineering - 1/80 - 10/84

Designed and developed a graphic based CAE system for NC machine programming with emphasis on
human factors, reusable software, and concurrent processing.

Designed and developed an innovative approach to the optimization of NC machine programs. This
algorithm saved over $700,000 per year and was an order of magnitude improvement over existing
algorithms.

Designed and developed a new costing and manufacturing engineering system based on a message pass-ing design and interpreted specifications. The result was a dynamically configurable software system"•that could be customized by users with no software engineering involvement.

Designed and developed a new language that extended and enhanced an existing HOL for improved
programmer productivity and program maintainability. The language is now in extensive use by sharing
via the users groups.

Designed and developed a reusable suite of human interface routines that tolerated and correctly inter-
preted many forms of errors.

Designed a prototype expert system approach to product engineering for custom printed circuit board
manufacture.

Listed in Who's Who in Computer Graphics.

Participated in industry committees to design a graphical exchange specification system that anticipated
and was a strong influence on the IGES effort.

Bell Telephone Laboratories, Member of Technical Staff 6/76 - 1/80

Developed and extended software engineering tools to provide a complete environment for develop-
ment of FORTRAN based code. including a timesharing enhancement to an operating system, com-
pilers, pretty printers, and code analyzers. The result measurably improved productivity in the depart-
ment.

Designed and developed an operating system for a multi threaded communications enhancement to run
on top of an existing real time operating system. It used time slicing, priority scheduling and dynamic
memory management to multiplex the communications of up to 15 concurrent processes over one dial

325

." i % ' - *K -.. *

up channel via a DDCMP protocol.

Johns Hopkins University, Instructor and Research Staff 9/65 - 6/76

Taught a wide variety of undergraduate and graduate physics courses. Research speciality was in plas- , _ -

mas and quantum electronics.

Developed efficient and sensitive computer algorithms for delicate line shape analysis in the presence of
noise. The innovative algorithm required new ideas in guided min/max searching for a five parameter -
highly non-linear functional representation.

Designed and constructed computerized data acquisition equipment that for the first time allowed sub-
microsecond detailed analysis of spontaneously emitted line shapes.

PUBLICATIONS L

(1) "EMC Design Considerations for Printed Circuit Boards", presented to the Printed Wiring Sympo-
sium. Mijas, Spain, (1984).

(2) "Human Factors in CAD System Design", presented to the Kollmorgan QTI Conference, 1981.
(3) "A Practical Solution of the Traveling Salesman Problem with Thousands of Nodes", CACM, 27,

no. 12 -, 1227-1236 (1984)1
(4) "An Alternate Approach to Software Development", IEEE Software Engineering, (in press).
(5) "Software Systems Development", internal Photocircuits pub. JDL-8, 1982.
(6) Department 4142 Time Share System, Case 38649-16, 1988.

(7) RMMS - TFMS/CTMS Interface Specification, BTL internal publ.. 1978.
(8) Evaluation of an Experimental Radio Performance Monitoring System, Case 38649-16. 1979.
(9) A New CTMS Database System, Case 38649-16, 1979.
(10) Results of a TFMS Automated Database Field Experiment, Case 38649-23, 1979.
(11) "Numerical Solution of the Boltzmann Equation in Plasmas, and Collisional and Radiative

Processes in Ion-Laser Plasmas", proposal submitted to the National Science Foundation, 1969.
(12) "Excitation Processes in an Argon Ion Laser", B.G. Bricks, D.E. Kerr, and John D. Litke,

presented to the 24th Gaseous Electronics Counterence, Gainesville, Florida, October 1971.
(13) "Spontaneous Atomic Line Shapes from an Argon Ion Laser Discharge", JQSRT, 12, 411-419.

(1977).

(14) "Current Modulation in a Pulsed Argon Ion Laser Discharge", J. of Appi. Phys 48, 1385-6,
(1977).

EDUCATION

Ph.D. in Physics - Johns Hopkins University 1976

B.S. in Physics - Massachusetts Institute of Technology 1965

326.-...-.- c_________________________________"_________

* .b .* *v .* rw. 4 , *. 7 yT .--- - - - - - - -.

0 U-

2327

. .

, . , -.

• ."

1-.%

U.
r

F.

k %

328°

3i

~ &:* -* .- .~... ., _

.32

- -S. S.S. - - ------.-... .-.--. -

a~z.

vi.-.

U)

3
C
A.
C
o ~:iiiI

it- Li

=
* L-.E

-
rj~

Ni

330

~, ...

S.

.*%*

* -.9.

d.

fr

I

E

0A.
E
C
C

I- r

331

p

..'2 . *.

.7 .47-qWMA 6- .-VV .- "% -

POO

Amo I

332 .

LUU

333

c.1

(UU

334

REUSABLE SOFTWARE IMPLEMENTATION PROGRAM:
RESPONSE TO REQUEST FOR INFORMATION

February 11, 1985

WP-23

Soffech, Inc.
3 Skyline Pl.. Ste 510
5201 Leesburg Pike

Falls Church, VA 22041-.

Contact

John G. McBride

Advanced Programs Manager

A bstract

The Graph Analysis. And Design Technique (GADT) is a visually oriented systems development . .
environment that is based on industrial and military techniques of software documentation. It is
consistent set of graphics tools that support the systems development process from requirements i
analysis through implementation. The GADT environment maintains a graphic representation of
software at the level of existing manual documentation methods such as SADT?TMO and pro-
vides a semantics jbr the execution of this representation with a library of primitive Ada?TO
units. We believe that this approach has important implications for software reusability at the
level of requirements reuse as well as for the development of a library of reusable software com-
ponents.

-J L

335
r

'Il 'K °

Section 1 ...

SUMMARY - REUSABLE SOFTWARE FOR
MISSION CRITICAL EMBEDDED SYSTEMS

SofTech, Inc., is pleased to respond to the dology combining features of a data-flow operat-
Reusable Software Implementation Program ing system, the Structured Analysis and Design
(RSIP) Request for Information. SofTech has Technique (SADT), and an Ada based detailed
been directly pursuing the development of a design methodology.
software engineering environment for reusable SADT like data-flow system design graphs,
software that will provide automated support for would be used by the operating system to specify
the full range of systems engineering tasks from the topology of an executable system-flow graph.
requirements definition to implementation. The workstation will support SADT based

We believe that software must be shared at requirements analysis, and, without loss of con-
the requirement level as well as the tinuity, the data-flow requirements graphs would
module/program level. A support environment be mapped onto functional system design graphs,
for an integrated development methodology span- and then onto executable system modules. At
ning the entire system life cycle is needed to pro- the point of system functional decomposition
duce and disseminate software that is shareable at where single programs could serve to perform the
these levels. We also believe that this support functions required by graph nodes, data-flow
environment must be easy to use if it is to graph description would be discontinued and the
become widely accepted rather than resisted. terminal nodes would consist of Ada units. The
This would encourage cooperation with RSIP graph edges would consist of typed data queues
goals by making the RSIP method the path of managed by the graph operating shell at runtime.
technical least resistance for the project staffs. The queue management system would encourage

We are investigating a Computer Assisted the production of simple, reusable Ada programs
Design workstation for software that supports the by relieving the primitive processing modules of t
Graph Analysis and Design Technique (GADT). the need ,o manage data buffering and program
This concept evolved from earlier SofTech work synchronization. These reusable programs could
in reusable signal processing software for the form the basis of a development methodology for
AN/UYS-1. As will be discussed below, this reusable software. Machine representable
work brought to light some reusability issues specifications would allow for retrieval and dis-
specific to real-time systems and some issues semination of software specifications.
generic to any large application. The GADT
workstation would provide a development metho-

336

Settion 2

CURRENT SOFTWARE DESIGN METHODOLOGY
VERSUS REUSABLE SOFTWARE Z

°.J

The Phase-I RSIP reports (1,2) indicate o They are input/output free, requiring the
* that there is no technical impediment to reusing calling applications to provide the larger sys- ~ ,

software if reusability is considered during tern structure that interconnects these -

*design. However, the issues involved in making modules.
software reusable are not well understood at this
time and the reports give no clues as to the Two issues in reusability are then: How can
nature of the design procedures that are required tedvlpetadcpueo oanseii
to assure a high yield of reusable modules from a primitives be encouraged during routine applica-

*design effort. However, even though the area of tions development?, and; What is it about our
reusability is relatively new, some basic points present methods that discourages this production
about reusability do seem clear. Perhaps the and capture? We will argue below that present
most important of these is that the amount of methods discourage the production of reusable
reusable software obtained using present methods software by failing to partition the system func-
has been so small that we are lead to wonder if tosi h mlfo ytmsrcuei h
they actually discourage reuse of software. large. Other workers in the field including

Stevens (3) and DeRemer and Kron (4) have
*2.1 Reusability in the Small made the same observation.

The major exception to the paucity of reus- 2.2 Communicational Cohesion in Present
*able products is support software including both Software Development Efforts Guarantees the

applications packages and operating system Production of Noureusable System Components
software. As numerous applications are imple-
mented in an area, a set of primitive routines are
defined over time that become support software In the present systems development pro-
and are reused for future developments in the cess, the data-flow portions of the systems,
area. These are often distributed by commercial implemented in procedural Languages, are corn-
vendors for commercial advantage. For example: municationally cohesive, in the sense given by
signal processing macros, such as Fast Fourier Meyers, Constantine and Stevens in (5). with the
Transform, crosscorrelation, recursive filters-, and algorithmic portions. This means that the data-
the like, are provided with commercial array pro- flow management code is intermixed with algo-
cessors to improve the marketability of the rithmic code on the basis of common access to
hardware. Two disadvantages of this natural evo- data items. The applications modules themselves

*lutionary approach are that it is slow, and that it must reflect the system structure as well as exe-
is designed to benefit the vendors rather than cute the algorithms. Typically, systems are
government. implemented as a relatively few, large tasks that -

Th-aueo hstyeo otaemy are unique when viewed at the highest level.
The atur ofthistyp of oftare ay, This type of cohesion guarantees at the outset

however, provide some insight into reusability in that the developed code will not be reusable since
the small. There are numerous examples of sup- a new application will require a new structure and
port packages, including the IBM scientific the existing modules will have to be redesigned.
subroutine package, and various signal processing To have any hope of developing reusable code,

*support software packages. These seem to share the modules developed must be functionally
two characteristics: cohesive. That is to say: "In a functionally bound

module, all of the elements of the module are
o They are comprised of discrete single func- related to a single function." (5) Present

tion routines that can be composed on each methods, then, are seen to encourage the
other to provide a large variety of complex development modules with distinct multiple func-
applications. tions grouped together on the basis of access to

337

CURETSOTAR ESGNMTHDLOY.--

common variables rather than on the basis of the cates that a data-flow paradigm, such as the ASP
functions actually needed. Common Operational Software (ACOS), for

software implementation allows an automated -.
2.3 Temporal Coupling In Realtime Systems trade-off of memory for knowledge of overall
Reduces the Degree of Reusability system structure. In present software architec-

tures, signal processing applications are spread b
In realtime applications there is an addi- out over many tasks. The tasks are multifunc-

tional problem of time lint; analysis that must tional, complex, and strongly time coupled. They
take peak loading into account. This requires are required to execute in certain intervals, to ,
that each system function must be dealt with in avoid resource contention with other real-time
the context of all of the other functions operating tasks. This temporal coupling requires a detailed
in the system. We refer to this phenomenon as time line analysis of operational systems to be
temporal coupling because the existing system developed, and the usability of a given task
functions constrain when a new function can be depends on the entire system surrounding that
scheduled on the system operation timeline, task and its resource utilization. This time cou- -:-

Thus, detailed knowledge of the surrounding sys- piing becomes more and more severe as the pro-
tern is required for maintenance and extension. cessor utilization increases. As a consequence,
Small modifications in such an environment modifications to existing systems become more
often have major implications for the structure of and more difficult and expensive to make. By
the surrounding system. When and whether a contrast, the ACOS shell runtime scheduler hasbeen demonstrated to adequately manage the-"
new system function can be added becomes more bee demonstrted to te l mang th
and more tightly coupled to the software already runtime complexities due to temporal coupling in
operating, as the system loading becomes exchange for, possibly, increased use of queue
heavier. Major modification or reuse of existing memory. It has been demonstrated to do so until
realtime systems is thereby made expensive and a very high level of processor utilization has been

realtme sstem is herey mae reached.an
difficult. reached.

Our experience with signal processing appli-
cations on the AN/UYS-l Signal Processor indi-

It:

338

..

I.

Section 3

THE GADT SYSTEMS DEVELOPMENT ENVIRONMENT

We believe that a unified methodology GADT environment combines SADT data flow
spanning the entire system life cycle and an asso- documentation, with a data flow runtime shell
ciated support environment is needed to reduce that schedules system software modules based on
analysis, design, and implementation failures, their data flow specifications. The nodes are
We are developing a Prototype environment, viewed as data transforms that are activated when
based on the documentation techniques described sufficient data is available for processing.
above that will: "''

0 Provide automated support beginning at COMPUTER
requirements analysis with tools to support -AOT ASSISTED
SADT, which has proven itself as an ideal TRANSITIONS
method of describing the functional L
requirements of a broad class of systems;

o Provide a unified set of tools that allows the
work products from each life cycle phase to
be used in the subsequent phases;

0 Support transition between design and -

implementation phases by stepwise
refinement until a system is produced; ADA POL

0 Present the in-process systems analysis and

- design in a manner which does not overload CODE
the information processing capabilities of
the human implementers;

o Define a runtime behavior for the system BASEUNE SYSTEM
specification that allows the high level IV
specifications to actually control the execu- Figure 3-1 The GADT Development Environ-
tion of the lower level system software. ment

This environment also provides automated
support at the junctures in the phases of the sys-
tem life cycles, and thereby reduces the chances
that the system, as built, will fail to meet its GADT also provides a separation of algo-
specifications (Figure 3-1). The highest level of rithmic portions of system software from the
this documentation consists of data flow graphs, buffering and synchronization among the nodes.
drawn with the aid of a graph-directed editor. Using GADT, the application designer is con-
This editor is used to specify the structure of cerned with the functions he is required to per-
applications in Hierarchical data flow graphs. The form and a declaration of the relationships among
runtime behavior of the graphs is given by the them. Implementation details associated with syn-
computational model first described by Rodriguez chronization. dispatching, access control, com-
(b.7) Karp and Miller 18) and Dennis (9) have munication, storage allocation, and process
given similar models of computation. This model (node) scheduling are handled by the GADT
was chosen on the basis of our experience with runtime shell using these declarations. We
the. ASP Common Operational Software (ACOS), believe, as does Stevens (3), that this approach
a data flow language SofTech developed for the to development will have beneficial effects on the
UYS-I Advanced Signal Processor (10). The reusability of the node software.

339

This follows from the fact that in the execute, and consumes all objects read. There-
present systems development process, the data fore, Node B requires node A to execute five
flow portions of the systems, implemented in times before its input requirement is satisfied.
procedural Languages, are communicationally Figure 3-3 shows the indicated execution ' "
cohesive, in the sense given by Meyers, Constan- sequence.
tine and Stevens in (5), with the algorithmic por-
tions. This means that the data flow manage- 3.2 The Graph Editor :-Y
ment code is intermixed with algorithmic code on
the basis of access to common data items.
Modules developed under present methods must To develop a GADT application, the

implement the system structure as well as that of designer draws the flow graphs using a graph-
the p idirected editor that provides interactive corn-

teprocessing algorithms. This type of cohesion mands for rapid graph definition. This editor
guarantees at the outset that the developed code
will not be reusable since a new application will allows the designer to represent the system struc-

require a new structure and the existing modules ture declaratively rather than procedurally. The

will have to be redesigned. To have any hope of designer places each node on the screen, names
developing reusable code, the modules developed its underlying function, and connects the nodes

must be functionally cohesive. That is to say: "In to form the application structure. The named

a functionally bound module, all of the elements functions may represent another graph, or a

of the module are related to a single function." primitive function drawn from an application
(5) The GADT environment is designed to facil- library. If the function underlying a node is
itate the production of reusable software by undefined, the name serves as a place holder for

separating algorithmic code and the buffering and future definition.
synchronization processes required to supply the The graphics editor, serving as the primary
algorithmic codes with data. user interface for both applications development

and run time debugging, allows a hierarchy of
3.1 GADT Computational Model graphs to be created and reused as building

When a GADT specification graph is exe- blocks. Modifications of graphs may include
cuted. each node (or activity in the terminology renaming nodes to specify new underlying func-

.'. of SADT), is scheduled for execution based on a tions, deleting nodes. moving nodes to another s, -

set of data flow activation rules by the GADT screen coordinate, and disconnecting and recon-

executive (II). This data flow model allows the necting nodes. A zoom function allows the user
operation underlying a node to proceed as soon to navigate the specification graphs, or to view
as all data required are available. No explicit syn- the contents of a node. whether it is a subgraph

chronization or concern for parallelism is or the procedural description of a primitive func-

*" required of the implementer. tion.
GADT implements the edges connecting One of the design guidelines for the GADT

the process nodes as queues of typed data objects editor is that a maximum of knowledge about the
of arbitrary complexity. When a node executes, nature of the data flow graphs and their content
the required input objects are read from each should be incorporated into the edit command

language. The developer can then communicateinput queue. After execution, data objects may wihtedtoabuacmonyelig
with the editor about a commonly held. high"-

be consumed by removing them from the queues information content model of the system under
depending on the node execution parameters. development using concise edit commands rather
Since the computational model depends only on than long textual commands (Figure 3-4). Until
the state of nodes input queues, a node can exe- .- la-4
cute repeatedly if its input requirements are still now, analysis and design techniques have

involved the creation of high information contentsatisfied. Alter a node has executed, the data models of systems on paper to ensure that allproduced are placed on the indicated output to the development hold a common r
queues. parties t h eeomn odacmo

model of the system under development. Syntax
The graph in Figure 3-2 illustrates this directed text editors such as that developed for

model. Initially the input queue, QI. to node A Gandalf (12) have been used to show that sub-
contains 1000 data objects, with Q2 and Q3 stantial effort can be saved by the developer if

* empty. Node A can execute since its input the editor is knowledgeable about the syntactical
requirement is met, and it consumes 100 objects. structure of the language being edited. The r
It produces 100 objects for placement on Q2. GADT editor applies this principle to data struc-
Node B requires 500 objects on Q2 before it can tures representing application software

340

- ."..

- - - - - - - - -- -

NODE A NODE B

~* .*THRESHOLD = 100; THRESHOLD a 500;
READ = 100; READ = 500;
CONSUME a 100; CONSUME = 500; -

PRODUCE z 100; PRODUCE = 100;

SOURCI FUNCTION FUNCT ION) SINK
MEMO AI

QUEUE I> QUEUE 2 QUEUE *3

Figure 3-2. GADT Directed FlowgraphL.

Xxp
S ACTIVATIONS OF A I ACTIVATION OF 8

Figure 3-3. Node Execution Sequence

14UUAN LO,.G-TiERM MORY WAS
HIGH INFORMATION CONTENT CAD? HAS HIGH

INFORMATION CONTENT

0r

Figure 3-4. A commonly held, high informa-
tion content model of the application under
development allows concise communication
between the developer and the GADT Develop-

~1 SNORTment Environment
SHR TERM MEMORY
HS LOW INFORMATION

CONTENT

341

specifications to achieve a similar reduction of The editor can also be used to enforce the
effort. specification of the system within the limits of

Another advantage to this approach is that human cognitive limitations. In his now famous
if the functions underlying the graph nodes have studies on the limits of human perception, Miller
been defined, semantical error checking is possi- (14) pointed out that the human digit span,
ble at edit time. When a node is connected. the which is seven plus or minus two, gives an indi-
data type of the nodes being connected can be cation that the average person can keep only
checked for consistency. Incompatible data types approximately seven items in short term memory
result in the generation of a connection error and at once. Further, when this memory is

the operation is disallowed. Another form of overwhelmed, all of the items are lost rather than -"

interactive parameter checking ensures that all only those after seven. Therefore, the amount of
required node inputs and outputs are connected. information presented to a human developer at
This is equivalent to a higher level language con- any one time should be strictly limited, and if too
sistency check on parameter passing and could be much information is presented useful perception
performed when the graph is saved in the library, is lost. Figure 3-5 shows a drawing made by a
The benefits of interactive graph-directed editing group of users who were presented with too
and error checking are superior to conventional much information during a structured analysis
development since errors are detected and fixed and design. While amusing, this picture shows
by the developer immediately, while the context that when presented with too much information,
of the system is still fresh. Many opportunities we can remember only an impression of confu-
for errors are eliminated due to the method and sion. This fact has been used in the design of
sequence of developing data flow graphs. As some of the software development methodologies
Smith et. al. (13) have observed, declarative task including SADT. GADT, and Yourdon-
description holds the potential to force users to constantine Structured Analysis. L
properly structure their task interfaces.

sow 11 .01Atlt (

Y"~~~a awI bt

"WDt" I

SFigure 3-5. An impression from an actual group of users who haC been "... ."-."
overwhelmed by the information content during a structuredl analysis .. }

342

• . .

.••................ '

.. . . . "' .4. ..F. . . - " " " ' . . - ' - - 2 ..

37'.

Section 4

CONCLUSIONS

GADT provides CAD support of a data ing software components. The graphic
flow systems development environment that we specifications are machine-independent and allow
believe will increase system development produc- the designers to concentrate on the functions of
tivity. It provides a unified methodology for the application. Specification of synchronization,
analysis, design, and implementation of software parallelism, and system level type checking are
systems and automated tools to facilitate the use provided in a convenient manner. As described,
of the methodology. The data flow technique these features may facilitate the development of
used is valuable for modeling system require- software that is reusable at the library modules
ments, controlling system complexity, and reus- and requirements levels.

Section 5

BIBLIOGRAPHY

(1) The IBM Corporation, Reusable Software (7) J. Rodriguez, S. Greenspan, "Directed
Implementation Program (RSIP) Software Flowgraphs: The Basis of a Specification and
Development Methodology Reviews Construction Methodology for Real Time
(Draft). IBM Federal Systems Division, Systems." The Journal of Systems and
9500 Godwin Drive, Manassas, Virginia. Software, Vol. 1. Issue 1, 1979, pp. 19-27.

(2) P. Grabow, W. Noble, C. Huang, Reusable (8) R.M. Karp, and R.E. Miller, "Properties of a
Software Implementation Technology Model for Parallel Computation: Deter-
Reviews. Hughes Aircraft Company, minacy, Termination, Queueing." SIAM
Ground Systems Group, Fullerton. Califor- Journal of Applied Mathematics, Vol. 14.
nia. October 1984, N66001-83-D-0095, FR No. 6, November 1966.

* 84-17-660.

(9) J.B. Dennis, "First Version of a Data Flow
(3) W. Stevens, "How Data Flow can Improve Procedure Language." An unpublished

Application Development Productivity." technical memo from the Laboratory for
IBM Systems Journal. Vol. 21, No. 2, 1982, Computer Science, Massachusetts Institute . .
pp. 162-178. of Technology. MIT/LCS/TM-61, May

1975.

(4) F. DeRemer, H. Korn. "Programming-in- "
the-Large Versus Programming-in-the- (10) ASP Common Operational Support Software
Small." IEEE Transactions on Software Methodology (ACOS) Benchmark Report.
Engineering, June 1976. pp. 80-86. NAVSEA Contract N00024-80-C-7198.

Doc. 3140-70.1, 30 August 1982.

(5) G.J. Myers, L.L. Constantine. W.P. "
Stevens. "Structured Design." IBM Systems (11) J.G. McBride. "Graph Analysis and Design
Journal. No. 2. 1974. pp. 115-139. Technique Methodology." An unpublished

SofTech Internal Research and Develop-
ment Program technical merno, September

(6) J.E. Rodriguez, "A Graph Model for Parallel 1984.
Computations." Doctoral Dissertation, Mas- _
sachusetts Institute of Technology, Sep-
tember 1967.

343

(12) D.S. Notkin, and A.N. Habermann, Mechanism." Computer (a publication of
"Software Development Environment Issues IEEE), September 1984, pp. 29-37.
as related to Ada." Tutorial: Software
Development Environments, A.I. Wasser-
man, Ed., IEEE Computer Society Press, (14) George A. Miller, "The Magical Number
1981, pp. 107-135. Seven, Plus or Minus Two: Some Limits on

Our Ability to Process Information."
Psychological Reviews, Vol. 2, No. 2,

(13) R.G. Smith, et. al., "Declnrative Task March 1956.
DescriPtion as a User Interface Structuring

344

% ° .

RESUME

JOHN G. McBRIDE

Principal Consultant

EDUCATION " "

B.$., Engineering Physics, University of Oklahoma.

Graduate level Computer Design and Management Course Work,
Data Flow Architectures, MIT.

SUMMARY OF EXPERIENCE

Mr. McBride has served in a progression of technical and management roles with
experience in digital signal processing, data flow languages, automated software
production, SIGINT collection and processing systems. He has led the development of
multimillion dollar computer based systems and has held responsibility for a million dollar

plus cost center..
Mr. McBride is a specialist in modern software engineering methodologies and has
pioneered the development of computer aided design techniques for software
development. His activities include strategic planning, briefing of senior DoD officials
and promotion of innovative concepts. He has served on several DoD Strategic Planning
Committees.

PROFESSIONAL EXPERIENCE

"SofTech, Inc. (3 years) Director, Advanced Programs. Responsible for business
acquisition, IR&D, strategic studies, special projects and product development for the
Washington Division.

Formerly, Director, Signal Processing reporting to the Manager of the Washington
Division. Responsible for total performance of the directorate relative to corporate

,- financial objectives. Specific responsibilities include program and project management,
business development and planning. Primary efforts have been focused on the
development of the Advanced Signal Processor Common Operating System (ACOS) to
support a new Navy Standard product for the AN/UYS-l Signal Processor. ACOS is a new
software methodology based on the data flow concept and directed graph theory which

" promises to reduce signal processing software costs by as much as 50%.

Mr. McBride participated on task forces and ad hoc committees which required direct
interfacing with NAVMAT and the Office of the Assistant Secretary of the Navy to
promote the funding of ACOS concept development.

He has developed concepts for computer aided design techniques for Ada software
development. Concept includes the use of interactive, graphic workstations to represent
software systems andautomated Ada source code generation derived from the graphic
representations.

345

Litton Systems, Inc. (4 years). Manager of Intelligence Systems. Directed all phases of

K. intelligence systems acquisition and development. Assisted the Government in defining
the requirements of an enhanced automated SIGINT analysis system.

Project Manager for the $2.4 million Automated Analysis Aids (A3) system. A3 provided
the first fully integrated system for DoD for high speed digitizing (40 MHZ), digital signal
processing, interactive graphics and relational DBMS. Based upon a dual PDP-I I
architecture the A3 System incorporated a common analyst language, standardized
interfaces of file formats and a library of modular signal processing functions.

Project engineer for an Air Force sponsored study to identify the tools and techniques
necessary to process and analyze complex ELINT signals collected in the next decade. .
Developed requirements for a wide band digital analysis system which included high speed
digitzer-buffer, interactive graphic display, an array processor and POP- 11/70 controller
for the U.S. Navy. Project engineer for ELINT analysis under contract from the U.S.
Government.

Lockheed Corporation (1 year). Operations Research Engineer. Staff to the EPM of the
Tactical Airborne Signal Exploitation System (TASES). Assessed the impact of system
design on operational requirements. Designed ground processing digital ELINT analysis
techniques to validate emitter classification and build a precision ELINT data base.
Developed ELINT signal processing and classification algorithms to reduce real-time
identification ambiguities. Developed models to predict the mean-time-to-intercept of
various high interest emitters using step-tuned intercept receivers as influenced by
environmental emitter densities, receiver dwell and analysis time, total RF coverage and
antenna dynamics of emitters and intercept system. Developed SIGINT threat scenarios
to evaluate throughout and system effectiveness.

NOSIC, Naval Intellixence Command (2 years). Intelligence Research Ssecialist.
Analyzed and evaluated current foreign military and space operation, C and tactical

• .doctrine from all source intelligence data.

U.S. Navy - VQ-2 (4 years). Mission Commander/Director of Analysis. Over 2000 flight
hours in the EP-3E aircraft with hands-on experience in collection, processing and analysis
of SIGINT. Responsible for Squadron level ELINT analysis, and mission intercept reports.
Developed synthesized analytical techniques with HULTEC applications.

COMMITTEE"

Participated in the ASW Signal Processing Study for the Assistant Secretary of the Navy
for Research, Systems and Engineering. Study focused on acquisition strategies during the

FE next 20 years.

Involved in several ad hoc committees associated with NAVMAT and PM-4 of the U.S.
Navy.

PUBLICATIONS

"A Computer Aided Design Methodology for Ada Systems," Mar. 84, SofTech
"Complex ELINT Study," Feb. 80.

.-. "An Algorithm for Recognizing Radar Scan Types," June 78.
*-" "Radar Fingerprinting Using Precision PRI Measurements," July 78.

346 ,r

GRAPH ANALYSIS AND DESIGN TECHNIQUE

(GADT)
TM

AN Ads BASED SYSTEM DEVELOPMENT APPROACH

PRESENTED TO
STARS APPLICATIONS WORKSHOP

ly

JOHN~ MqBRIB9E

APRIL lpw13, 1985L

A9Is a tradmsk of then U.S. Governmnt (Ads Joint Prage gram$g

* .1 ft" 6W. SWo 64w" WgAP FI ikWK VA 2041 7IS431.

347

AdJAMSYSTEM INTEGRATION

* WHY AN INTICaAM'j APPROACH 15 NEIEDED

* MAJOR REQUWRISjt4 P49 AN INTIGRATED APPROACH

* GRAPH ANALYII &4§ Mg10§ Te-1NQUI

348

.A

THE PROBLEM WE ARE ADDRESSING

IN THE CURRENT SOFTWARE DEVELOPMENT PROCESS

* DISJOINT TOOLS FOR DEVELOPMENT

0 TOO MUCH OPPORTUNITY FOR MISUNDERSTANDING

* EXPLOSION OF COMPLEXITY,-

* LACK OF ADAPTABILITY AND REUSE

* HARDWARE KNOWLEDGE REQUIRED AT DESIGN LEVEL 7

3.

. %" K

%V ,•

349'.

71-177% T-1.7,1

IL

%t

MAJOR REQUIREMENTS FOR
AN INTEGRATED APPROACH

* UNIFIED FROM REQUIREMENTS ANALYSIS TO SYSTEM

CONSTRUCTION TO SUPPORT STEPWISE REFINEMENT
WITHOUT MAJOR DISCONTINUITIES

* PROVIDE HIERARCHICAL LEVELS OF ABSTRACTION
TO AID IN COMPLEXITY MANAGEMENT

DEVELOPMENT RULES WHICH ARE DECOUPLED FROM ..

UNDERLYING SYSTEM ARCHITECTURE

350 ".. -

-. *~J. ~.D . • - . * * *. -

INERTDAPOC CN.

MAOR REQULZAIRMF YSET FNTORSFO
AN PI I ITTRARTATIO APPRAC (CORTADNYTHE

* MINTIGNESINITGTYTRU OUDELPMT

RUOIAIY NEPEAINRAND CDERANDINSSOBYATE

B9GUtI ATION

351

* GRAPH ANALYSIS AND DESIGN TECHNIQUE (GADT)

*GADT IS A UNIFIED METHODOLOGY FOR DEVELOPING COMPLEX

SOFTWARE SYSTEMS

*GAOT SUPPORTS CONCISE REQUIREMENTS DEFINITION IN GIAPNIC

FORM WHICH ARE AUTOMATICALLY TRANSLATED TO AdsTM

SOURCE CODE

Fk-

352

-~~~ ~~~ - gr.. . . - .

GADT ADVANCES SOFTWARE
METHODOLOGY

CADT INTEGRATESs

* STRUCTURED ANALYSIS AND DESIGN TECHNIQUE
IT (SADTTM

* DATA FLOW CGPIITATIONAL MODEL

* A SEMANflCS-DIRECTEO GRAPH LANGUAGE EDITOR

TSAOT IS A TRADEMARK OF SOFTECH. INC,

I %

353

GADT DATA-FLOW DIGRM
ARE HIERACHICALLY ORGANIZED

I TO AVOID INFORMATION OVERLOAD

I I OSLIGA

11110114 TW

U354

DAAFLOW COMPUT ATIONAL MOE

-~ ~ ~ ~~~~ =) A A:O I CIDLDTOEEUE

S ALk ITS INPUT QUEUES CONTAIN SUFFICIENT DATA FOR PROC5111IWG

* ALL ITS OUTPUT QUEUES CAN ACCEPT DATA

355

* GADT GRAPHIC DISPLAY

PILTU NDES AN

356WSAR

DATA
INTERACTIVELY

GADT GRAPHIC EDITOR
ERROR CHECKING

* STRUCTURAL CONSISTENCY

* CONNECTIVITY OF INTRA GRAPH NODKS

* CONSISTENCY BETWEEN HIERARCHICAL LEVELS

* AVOIDINfQ MULTIPLE CONNECTIONS TO THE
SAME PORT

* FUNCTIONAL CONSISTENCY

* DATA TYPE CHECKING BETWEEN SOURCE AND
SINK NODES

* INCOMPATIBLE NODE EXECUTION PARAMETERS
(I.E.. THRESHOLD< READ)

357

GADT PROVIDES TRANSPARENCYIi OF HARDWARE TECHNOLOGY

GRkAPMO OPTIMIME
GRAPHS RAPFSR PROGRAM
GRAFNA RAPHS UNCT10MAUTY

S SAME
MMYIMPACE

SHILL AND
SHELL &HILL ___Ads AT" 8PTIIEO

s 6 PON PROM"
Ad& RTOS Ads RTOS UA

___ ARDWARE __

DEPENDENT
INTRFACE

HARDWARE HARDWARE

358

..
. - .- -- - - .!, ' 7

ACIEVING ADAPTABLE AND RELIABLE SYSTEMS"

UNIVIUS W A&MITUCTURKS UNIVERSE OF Ads SOLUTIONS 1

GRAPH AOAPAU AMD
* EPROCUSORAA&& SVTTI

359

21, -P,-

I.

d r1

COCLSIN

COMUNCONCLN

* AIDS IN COMPLEXITY MANAGEMENT

0 HIDES PECULIARITIES OR HARDWARE ARCHITECTURE

0 REUSABILITY OF GRAPHS

* AUTOMATED PROGRAM GENERATION

360

A SOFTWARE DEVELOPMENT METHODOLOGY
FOR REUSABLE COMPONENT

Ron McCain
Federal Systems Division, IBM

Houston, Texas

ABSTRACT e-c

component reuse, however, will not be possible without a software development approach that
emphasizes the production of reusable software components. This paper defines the characteristics
of reusable software and proposes a software development methodology that produces software
components e.xhibiting these characteristics. The methodology is intended to supplement rather I
than replace other sound software development methodologies. In addition to describing the
reusability-oriented thought process associated with the methodology, the paper suggests new work
products and validation procedures to support the methodology.

Introduction Before a reusable software component
development methodology is proposed, the

It is commonly recognized that software characteristics of reusable software components
reusability could provide powerful leverage for and how to build software to exhibit these
reducing future software development costs. In characteristics must be examined. For significant
fact, software component reuse could very well reuse, software components should possess the
be the most promising area for a major software following characteristics:development breakthrough within the next
decaeopme snt breakthrough ewitin thetnext (1) Component is applicable to multiple users.
decade. Any significant advances in softwareIfastwrcopntiseddolyna
reusability will include a reusability-oriented If a software component is needed only in a

software development approach as well as reus- unique application for which it is
able software component library (1). Many developed, the component is clearly riot, .,

* abe sftwae cmpoent ibrry (). anyreusable. Conversely, potential reuse can
papers on reusability have focused on the need beuaxed bynevelping c es
for reusing software, and a component library as t e a subsantia domin opnisabil-
a means for accomplishing this. Relatively little ty te tat refer n o cponent
attention has been given to the issue of how iues N thap re ended, inen-
software should be constructed for reuse. If the users" in this paper are intended, in gen-

software industry cannot adequately establish eral, to apply to other software entitiessoftware development approaches that emphasize requiring the services of the component to

the construction of reusable software corn- function properly, not end-users of the
ponents. then attempts to reuse software from a overall software product under develop-
component library will, of course, prove to be went.
futile. (2) Component is usable. Component usability

is a prerequisite for component reusability.
This paper presents concepts and a candi- If a component is not constructed to satisfy

date methodology for the development of reus- the user's needs in a highly usable manner,
able software components. The methodology is the component may have limited reuse
intended to be applicable to customized software even if it has a significant domain of appli-
product development environments as well as cability. Major factors contributing to the
specialized Component Development Groups (2). usability of the component are as follows:
It is also intended to provide a systematic
thought process to be used at all stages of Specification precision
software decomposition to influence the produc- User knowledge proximity
tion of reusable components. Interface abstractness

Functional cohesion
Characteristics of Reusable Software

361

-" " --" "" " "' " ' " -.' .i " ' " ' •" " •'" "" " " " i. -" -. i-•- i .. - ? . - -' . .

- X 27

The component implementation should specification that reflects the Current
have a significantly smaller impact on the usabil- Specification requirements not accommo-
ity of the component than the above factors. dated and repeat step I.

(1) Interfaces are completely and accurately (5) Define Current Specification Reusable
specified. All interfaces should be explicitly Objects. Identify Reusable Objects that are
defined with a formalized specification that applicable to the domain under considera-
is separate from the implementation itself. tion. Reusable Objects are abstract classes
The specification should include all infor- of data that have associated reusable opera-
mation which must be provided to use the tions.
component, including procedural parame-
ters, tailoring options, and user-supplied Examples of Reusable Objects and their
code. associated Reusable Operations are shownbelow:"'

(2) Component has minimum dependency on blw
other components. Component users
should be able to utilize the component Reusable Object Reusable
with minimum denendencies on other com- Operation

ponents are assumed to have teen previ- Stack Push
ously addressed. The methodology suggests Pop

a thought process for decomposing a prob- Make Empty
lem solution for the Current Specification If Empty

into reusable subcomponents. If Full

Set Union .

The step-by-step thought process is Intersection
described below: If Null

(3) Perform Domain Analysis For The Current Complex Numbers Add
Specification Component. A Domain Subtract
Analysis should be performed prior to the _,
implementation of the Current Specification Air Data Sensor Determine Airspeed
to identify potential users of the software If Powered On
and their specific needs. This Domain
Analysis will influence the software imple- Symbol Cross- Determine Next
mentation to accommodate these needs. Referencing Variable
Potential reusability constraints implied by Determine Next
the Current Specification will also be Statement XREF
identified. Emphasis should be given to (nti R
identifying commonality across the domain (6) Define Current Specification Reusable
under consideration which will form the Abstractions. Determine the Reusable
basis for identifying abstractions with max- Abstractions applicable to the problem solu-
imum reuse potential)i.e., candidates for tion. This will include both the operations
reusable component implementation). This (i.e.. object services) for the Reusablereuabeiscomponentoimplementatione. This Objects as well as functional abstractions. Li1analysis will also be used to extend the The Domain ,Analysis should exert a
domain of applicability of componentsunder consideration for implementation. significant influence on the definition of the .

Reusable Abstractions. Whenever possible,
(4) Reuse Existing Software If Available. an attempt should be made to define Lay-

Determine if existing software can be cost- ered Abstractions to increase potential
effectively reused or recovered to satisfy all reuse. Layering can be used to partition ,--

or part of the Current Specification require- abstractions to achieve different levels of
ments. If so, use the existing software. reusability potential. Maximum reuse can
Otherwise, proceed with new development then be achieved through the use of Primi-
with the goal of producing reusable tire Abstractions, i.e., the Reusable
software. If only a portion of the Current Abstractions that are common for all levels
Specification can be cost-effectively satisfied of layering. With the object-oriented
with existing software, define a new approach. primitive operations defined for

362,

,,- 362

I.

Reusable Objects may not be directly usable -Accommodate an optimum 1WF

by the Current Specification component and number of component
may need to be supplemented by a Layered users in a highly '

Abstraction utilizing the primitive opera- usable fashion.
tion. The "Determine Next Referencing
Variable" and "Determine Next Statement -Accommodate changes in
XREF" Reusable Operations mentioned component implementation,
above are examples of Primitive Reusable including data
Abstractions for a Symbol Cross-Reference representation, without
Object. These Reusable Abstractions are effecting component usage.
broadly applicable to most users of Symbol
Cross-Reference information. Specialized Applicable Existing Software. K
usage of the Symbol Cross-Reference infor- Describes existing software that may be
mation might require Layered Abstractions. appropriate to partially or wholly
For example, if a user wants to determine if accommodate the component specification.
interprocess variables have been properly The existing software will become a
protected, Layered Abstractions derived candidate for reuse during the software
from the primitive operations could be as implementation.
follows (Note the different levels of reusa- Domain Analysis Summary. Includes a
bility potential for each Layered Abstrac- definition of the potential user set and their
tion): needs that can be accommodated during the

-Determine If Interprocess implementation of the Component
Variables Are Protected- Specification. Potential reusability

constraints implied by the component
-Determine Next Interprocess specification should be identified. Any
Variable commonality associated with the domain

under consideration should be described. An
-Determine Next Variable initial definition of abstract data objects and

their associated operations, as well as other

-Determine If Interface functional abstractions, should also be
Is Properly Protected provided. The Domain Analysis Summary

will provide a basis for establishing Reusable
-Determine Next Interface Abstractions associated with the Component
(Pair of Statement XREF's) Specification and thus influences the Abstract

Interface Specifications to achieve optimum
-Determine Next Statement XREF reusability.

Abstract Interface Specifications.
(7) Define Abstract Interface Specification For Provides the formal specification for the

Reusable Abstraction. A formal implementation of each Reusable
specification will be defined for each Reus- Abstraction. All user interfaces with the
able Abstraction defined above. The formal associated reusable component should be
specification, called an Abstract Interface explicitly defined by this specification.
Specification, should include an explicit efdci
definition of all interfaces associated with Abstract Constraint Analysis Summary.
the usage of the Reusable Abstraction. The Provides a definition of all remaining
Abstract Interface Specification should constraints implied by each Abstract
attempt to satisfy the following objectives: Interface Specification, including both the

Usage and Implementation Constraints when
-Minimize the possibility of appropriate. Each constraint should be
change to the interface as accompanied by an analysis summary
a result documenting the rationale for the constraint.
of changes in component
usage or component
implementation, i.e., to"a i
assume the interface to The work products above will form the
be invariant, basis for both influencing and validating

363

7..

proper implementation of reusability and components to be reused. By examining the
maintainability attributes during component characteristics of reusable software and
development. An initial review should be establishing a software development
held prior to component implementation to methodology that allows software to be
influence the implementation to include constructed with these characteristics, an
reusable subcomponents. All work products initial step has been taken to influence the
for the component to be developed should production of reusable software components.
be provided to support this pre- The methodology presented within this paper
implementation review. Another review has evolved from limited application of an
should be held after the component is initial version of the methodology (16). In
implemented to validate proper reusability order to validate that the methodology is a
accommodation within the implementation. reasonable model for developing reusable
The Abstract Interface Specification and software components, additional pilot
Abstract Constraint Analysis work products projects must be selected and used to
for any newly created subcomponents should validate and enhance the methodology or
be provided to support this post- establish reasonable alternatives. Work
implementation review, products, enforcement mechanisms, and

At least three different points of view support tools must then be put in place to
other than that of the component make the resultant methodology a normal
programmer (not necessarily three different way of developing software.

people) should be represented at each review References
to ensure that reusability and maintainability
objectives are satisfied.

Domain Analyst. Must have familiarity (1) McCain, R., "Software Reusability
with the intended and potential domains of Study Report", 1984
applicability of the component and its related (2) McCain, R., "A Product Approach For
software. By identifying areas of Software Component Development",
commonality as well as applicable existing 1984
software, he/she should exert a significant (3) Booch. G., Software Engineering With -
reusability influence on the component Ada, Benjamin/Cummrigs Publishing -

software implementation. Company, 1983
Software Component Engineer. Must (4) Booch, G., "Solve Process Control

have good understanding of software Problems With Ada's Special
engineering practices that promote the
development of reusable, maintainable Capabilities", Electronic Design News,

components. Through application of sound June 23, 1982, pp. 143-152

software engineering practices. he/she will (5) Parnas, D., "On The Criteria To Be
be able to appropriately influence the Used In Decomposing Systems Into
component implementation to achieve Modules". Comm. of the ACM. 1972,
optimum reuse and reduce maintenance Vol. 15, No. 12, pp. 1053-1058
costs. (6) Parnas, D., "Designing Software For

Component User. Must be responsible East Of Extension And Contraction",
for other software that is intended to use the IEEE Transaction on Software
component. He/she should exert a Engineering, Vol. SE-5, No. 2, March,
significant influence towards ensuring that 1979
the components will satisfy the needs of the (7) Parnas. D., "The influence of Software
intended users in a highly usable manner. Structure on Reliability", Proceedings

of the 1975 International Conference "
Summary on Reliable Software. pp. 358-362

In order to dramatically reduce (8) Parnas. D.. Clements. P., Weiss. D..
software development costs, it is necessary "Enhancing Reusability With
that software developers learn how to reuse Information Hiding", Proceedings for
existing components. To accomplish this, Workshop on Reusability in "
they must first learn how to develop Programming, 1983

364
r

.................. *~~ -..

(9) Parnas, D.. Clements, P., Chmura. L.. Journal, 1974
Heitmeyer. C., Britton, K., Shore, J.
Weiss, D., Software Engineering 0 1) Parker, A.. Heninger, K., Parnas, D.,
Principles, Naval Research LaboratoryShr. I, Asac Ineae

Coure Ntebok, 981Specification For The A-7E Device
(10) Constantine ., Myers, G., Stevens. Interface Module. NRL Memorandum

W. "tucurdDeig" IMSystems 4385, 1980

365

AGENDA

*INTRODUCTION

*CHARACTERISTICS OF REUSAB3LE
SOFTWARE COMPONENTS

*REUSABILITY CONCEPTS

*A PARADIGM FOR REUSABLE
COMPONENT DEVELOPMENT

*REUSABILITY-ORIENTED
REVIEW PROCESS

*SUMMARY

366

U.,,

z2 z Il

o: L.J V)

IL u-i

oUI - <IC

L' L.L LLL
LAuJJ

ZIin&

L.uJ
0 -Ox

367

Z 0

>N

(JHZ~0 =00 uU c:-

LAJ V (DJIU J<0 DZ 0c L-

U.) V)zC I0C -

LLLL<

0c(0

IL >-

368

rL#
-A

8 a- ~
~*.

m I

a-. op
00

m

0 >0.

_ _
0

0 0

aim

LULf

m m 00 E(0
369 J

a. .1r

CHARACTERISTICS OF
REUSABLE COMPONENTS

1. MULTI-USER APPLICABILITY

2. USABLE

3. COMPLETE, ACCURATE INTERFACE
SPECIFICATION

4. MINIMUM DEPENDENCIES '. [.

5. MINIMUM KNOWLEDGE OF L
IMPLEMENTATION

6. ACCOMMODATION OF CHANGE

r'"

370
':-;-'

r -17• , -1 7.

REUSABILITY CONCEPTS

SE CONCEPTS FOR REUSABILITY

SE CONCEPTS FOR MAINTAIN-
ABILITY

OBJECT-ORIENTED
STRUCTURING

TOPDOWN, STEPWISE -
REFINEMENT

INFORMATION HIDING ABSTRACTIONS
STRENGTH INDEPENDENT PARTS
COUPLING CHANGE ACCOMMODATION
FORMAL SPECIFICATIONS

DOMAIN ANALYSIS FRAMES
REUSABLE OBJECTS TEMPLATES [
REUSABLE ABSTRACTIONS PLANS

ABSTRACT INTERFACE SPECIFICATIONS

ABSTRACTION CONSTRAINTS

CONSTRAINT ANALYSIS

371

p...

REUSABILITY METHODOLOGY

BASIC UNDERLYING CONCEPT

COMPONENT DOMAIN

~MULTIPLE

IMPLEMENTATIONS

KEY QUESTION TO BE ADDRESSED BY METHODOLOGY:

HOW CAN WE OPTIMIZE NUMBER OF COMPONENT
USERS WHILE RETAINING COMPONENT IMPLE-
MENTATION FLEXIBILITY ?

372

...............................

.. ,. ,,-. ..

REUSABILITY METHODOLOGY
BASIC UNDERLYING CONCEPT

COMPONENT DOMAIN i,

Ils

IMPLEMENTATIONS

KEY QUESTION TO BE ADDRESSED BY METHODOLOGY:

HOW CAN WE OPTIMIZE NUMBER OF COMPONENT
USERS WHILE RETAINING COMPONENT IMPL--
MENTATION FLEXIBILITY?

J

373

..-. -

A PARADIGM FOR
REUSABLE COMPONENT

DEVELOPMENT

FOR EAC

PERFORM DOMAIN
SPECIFICATION AAYI

I CONDUCT REVIEWI
I TO INFLUENCE 1

REUSABILrrY I
IMPLEMENTATION

REUSE EXISTING
SOFThJARE IF

AVAILABLE

PERFORM
REUSABLE

COMPONENT
ENGINEERING

SIMPLEMENT CUR-
ENT SPECIFICATION
CCMPONENT& REUS-

~ABLE SUB3COMPTS .

CO6NDUCT REVIEW
I TO VAL IDATE I

I REUSABLE I
I IMPLEMENTATION_

374

*.

'?.-7

A PARADIGM FOR REUSABLE
COMPONENT DEVELOPMENT

REUSABLE COMPONENT ENGINEERING

1%'

DEFINE REUSABLE
OBJECTS

DEFINE REUSABLE
ABSTRACTIONS

DEFINE ABSTRACT
INTERFACE

SPECIFICATIONS

t. DEFINE.: ~ABSTRACTION ''..

CONSTRAINTS

PERFORM
CONSTRAINT

ANALYSIS

" REDEFINE -

A-STRACTIONINTERFACE SPEC.-.:".

DEFINE
IMPLEMENTATION

I SPECIALIZATION

4 5

-, . ..

REUSABLE OBJECTS/OPERATIONS
EXAMPLES -

STACK'
PUSH
POP
MAKE EMPTY
IF EMPTY
IF FULL

SET
UNION
INTERSECTION
IF NULL

COMPLEX NUMBERS

ADD
SUBTRACT

AIR DATA SENSOR
DETERMINE AIR SPEED
IF SENSOR POWERED ON

SYMBOL CROSS-REFERENCES
DETERMINE NEXT REFERENCING
SYMBOL

DETERMINE NEXT STATEMENT XREF

376

:::..................................

REUSABLE ABSTRACTIONS
EXAMPLE OF LAYERED REUSABLE ABSTRACTIONS

-. DETERMINE IF
SYMBOL INTERFACES

ARE PROTECTED

----------------------------------- '1

INJTERFACES F
DETERMINE DEERIN INTERFACE

NEXT INTER- NEXT INTERFACE
FACING SYMBOL (PAIR OF PRO- IS PROTECTED

I __ ___ ___ ___CESS XREFS) _ _ _ _ _ _ _

DETERMINEE
NEXT PROCESSDERMN

* IXREF (STMT PRIORITIES
XREF, PRIORITY)

r--------------------------------

SYMBOL XREFS
NETEREF.E DETERMINE

NEXTREF.NEXT STMT.
I SYMBOL XREF

I. -------------------------------- ------- I

PRIMITIVE
* ABSTRACTIONS

377

ABSTRACTION CONSTRAINTS
- - EXAMPLES

ABSTRACTION - DETERMINE NEXT STATEMENT XREF

USAGE CONSTRAINTS -,

- ONLY USE FOR A SPECIFIC HIGH-ORDER
LANGUAGE(EX., PL/I)

USE ONLY IF PREVIOUS EXECUTION
OF INITIALIZATION OPERATION

NON-MEANINGFUL NAME FOR

ABSTRACTION (EX., DNSX)

IMPLEMENTATION CONSTRAINTS

RESTRICTED TO SEQUENTIAL INPUT
REPRESENTATION - WILL NOT ACCOMMODATE
RELATIONAL DATA BASE INPUT REPRESEN-
TATION (ALSO A USAGE CONSTRAINT)
STATEMENT IDENTIFIED BY RELATIVE ADDRESS
BUT NOT STATEMENT REFERENCE NUMBER
(ALSO A USAGE CONSTRAINT)

LINKLIST INTERNAL STORAGE ONLY
OF XREF INFORMATION

378 c

. . * . ..

.. ~ A ~ \..' - .. 't.-" -

-- MFD'ORMAr XIONS AE3OCIX marEE WIX T-
-- ML-MaDcL. SVMBML- INf=IMg- IOMMX. -

*--WIXL-L. FD'RO'IXDME SV"IBOL. NAIMMES
-- A-r-FItIBMU-TE3a, A~nD CU~tO3S Ml-F=I=-FtNCEI
--- INFOF3'1ATI0N TOC T-1E- P'A(CI<C3I UaE-FIt
-- DY~ E:L..X I'IN-rX INQ =M3TN TSA X r T-4~l=

*--A]BS3rFtA(CT MA-TA TYeF2'S= iAN
--OERr ION oma 'd "AVM MESISxNEE-n TO

-- M1sXXIMIZE- ME-=UaS~nl.ITYr POTM-ENTI-XI.
-- AMM A4CCO-MMMMA-TE M

-- IMPL.tEME-N"-rA I ONS-

TYFE=' aVLOC<_'fE ISa F'Ft X VA-Tl;
TYNeFE-=1 SY1- C-l._-DVPe: CRI TPDF X ISA-r

-rVF== 3 B - M =MA--MDt lE

(=' SS I M N a F -rVEPNI=EI

TYF XRF TYFOI
a -m- a-mD
BL.OCI< BL.OCI< -rYF=;
SMT SMT_ T;~

C!SYMIBOL._ ID zOcuT

FND __ OF SY3'M3BDLS=-z O~UT
ST.rATLEs_ I n ICMATDFIR)

IEND __OF_ XRIEFS:- O~uT
S3-r TrJS_ I n xIrCATrcFIz

3/9 C
ciI

L'4

--- riER= xO mfLIE m -4ocL. M SM OrLS..
-- THCI--KS6C FI=-T SMTI N Fm = F s r W EL..L. "S V
--Ti-IE MII' IL.EI1ENTl TI OFM TI-IEMM33*-r

-- S3VMIu<3LQS AaaE3= XTIOl=s WO L. X -" %'EM:;
-- TOMMAM BE MM L-006"MTOPICOMMD

TY E3 BL.OCI<_rFTY IS STRC C 1 &)
TY X Si T_ YP ISF M- 1 -)

TYPE- XTR T P ISrE (EF

SF' MAr~

F' M CSTOR

STRUCURE,-

COMMFO CL.
N4A1E,
D P E3 L 9 F
3DF= JECTO-rC ,
DF- Mdcl FtR I X

S3 e M I--dc -rC VAF~tX AIB TER)

380

E3CYMMU. X TNETYMOa

-~- SYMBOL.D3SCR FTOU-

A Tr-rFt z O3UTr 94 rTrR VYF=OE-=

ODFt3C E=-3)U M X D- -r NFE X-rS-r MTrX MEF=

EN OaF XIe:RS: O cuT

E=Nn SMOL__ INFO -=PkCIF<AG

381
c.'

a- 4..

IL Z <L I U.-.

Li.. L z =-I:'a

0 L

z:

*j 0

* ICL

F-
LJJ :z LU

Z LU - (1)-.

0 ZQ 0
V)u 0 L2j

U

I II

-f M C', (n
--

1

77 -772 777.7 07 - .- 7

L 0 jj>OJ V)O

00r

Z Z

o Lo
LU

00C) CD
~o~

0~~ cz-i

-J C/)O<

U) CD

ILLl

CD H-CJ D
LU ~ w LU L.V)0O

O 0 OQ

F- <rQ~L ~crlcz
O cOQf_ LL))L-) a<c

cDo
383

SUMMARY-.

- SOFTWARE REUSE COULD BE THE KEY FOR
DRAMATICALLY REDUCING SOFTWARE r
DEVELOPMENT COSTS -I

* SOFTWARE COMPONENT DEVELOPMENT
METHODOLOGY PRESENTED

-- COMPLIANCE WITH REUSABILITY

CHARACTERISTICS

- WORK PRODUCTS

-- VALIDATION PROCEDURES

* HAS EVOLVED THROUGH LIMITED
APPLICATION OF REUSABILITY CONCEPTS

* WILL CONTINUE PROOF OF CONCEPT -

- METHODOLOGY VALIDATION

- METHODOLOGY ENHANCEMENTS

- SUPPORT TOOLS

r

3 4

..3 8 . .". ..

CONTRACT FO 8635-84-C-0280
COMMON ADA MISSILE PACKAGES (CAMP)

PRELIMINARY TECHNICAL REPORT
VOLUME 1

STUDY RESULTS

I.1 February 1985

McDonnell Douglas Astronautics Co.

ABSTRACT

This report describes the work performed, the results obtained, and the conclusions reached during the
first five months on the Common Ada Missile Package (CAMP) contract. This work was performed by the
Computer Systems & Software Engineering Department of the McDonnell Douglas Astronautic Company - St.
Louis (MDAC-STL) and was sponsored by the United States Air Force Armament Laboratory (AFA TL) at
Eglin Air Force Base, Florida. The MDAC-STL program manager was Dr. Daniel G. MWcNicholl and the

- A FA TL program manager was Christine M. Anderson.

Dr. Daniel G. McNicholl
McDonnell Douglas Astronautics Co.

(0 Computer System & Software Engineering Department
P.O. Box 516

St. Louis, MO 63166

Christine M. Anderson
Air Force Armament Laboratory

Aeromechanics Division
Guidance & Control Branch

Eglin Air Force Base, Florida 32542

385

,aw

SECTION I

OVERVIEW OF THE CAMP FEASIBILITY ANALYSIS

1. PURPOSE

The objective of the Common Ada Missile Package (CAMIP) program is
to determine the feasibility of (1) reusable missile software components
written in Ada, and (2) an automated or semiautomated software generation
system. This report is intended to describe the work performed and the
results obtained from the first five months (5 September 1984 through 31
January 1985) of the CAMP program.

2. INTRODUCTI ON

During the past ten years, the U.S.Air Force has become
increasingly sensitive both to the critical role that software plays in
DoD mission critical systems and to the fact that its contractors
involved in software development are facing a crisis. This crisis
severely impacts the Air Force because it results in (1) rapidly
escalating software development and maintenance costs, (2) delays in the
deployment of new defense systems due to expanding software development
schedules, (3) restrictions on the number of programs which can be K
concurrently developed due to a shortage of critical expertise, and (4)
software reliability problems with deployed defense systems.

The basic cause of the software crisis is that the explosive growth
in the size, complexity, and critical nature of modern so twasre systems
has resulted in the situation where our tools are antiquated, our methods
are inadequate, and our personnel are under trained and in many cases
inexperienced. Obviously such a complex problem has no one solution, but
concrete initiatives do exist which, if taken, will alleviate the current
situation. While it is beyond the scope of this report to dlscuss all
t1he initiatives which are being proposed, there is one initiativc. -- the
reuse of software parts -- which most imowledgeable software engineers
believe is essential in any solution to the software crisis. The concept
of reusable software parts is the motivation behind the CAIP program.

Si=ly stated, reusable software parts are prebuilt software
comnonents (either code or design) which are capable of being used more
than once to construct new software systems. The most obvious benefit of
reusing software is that less code needs to be developed and therefore

" less time and money is required to be spent during the development of new
] software systems. However, there are a number of less obvious benefits

whi-h in some cases have an even greater payoff. If software components
* can be reused, then (1) less code has to be maintained, (2) fewer -eople

are needed, and (3) a higher degree of reliability can be obtained.

386

Since maintenance costs (i.e., the cost to correct software errors,
modify the software to a new environment, and expand -the capabilities of
the software) often greatly outweigh the development costs of software, a
reduction in the amount of code to be maintained can result in
drastically lower product life cycle costs. Assuming a significant level
of software reusability, the required staffing for a software development
and/or maintenance project will be descreased. Given the shortage of
software engineers that exists throughout the industry, this is a major
advantage. If the parts which are prebuilt include functions which
typically require a high degree of application expertise (e.g., Guidance

"- & Control), then a project can perform the same development with a lower
level of such expertise. Finally, if the prebuilt parts are rigorously
tested before they are cataloged for later reuse, then the reliability of
the new software systems will be increased.

Given all these advantages, it is only natural to wonder why
software has not been reused in the past. The answer to this question is v
that it has, but only to a very limited degree. Almost all software
systems have incorporated certain types of prebuilt software parts. The
most common type of reused part has been the mathematical part, i.e. a
routine from a math library. Yet if this type of low-level reusability
was all that we could hope to obtain, the benefits discussed earlier -.

would not be achievable. The three primary reasons for our past
inability to achieve a meaningful level of reusability are (1) our
progrsmming languages (e.g. FORTRAN, Assembly, JOVIAL, etc.) have not had
the facilities to support software reusability, (2) we have not invested
the time and effort to identify the commonality in our software systems.
and (3) our software developers have not been encouraged and/or required
to reuse software parts.

With the advent of Ada, we now have a computer programming language
which was explicitly designed with the goal of software reusability in
mind. Specifically, Ada possesses facilities for (1) transporting
programs across machine and operating system boundaries; (2) enforcing
the design and construction of autonomous software units with clean,
well-designed interfaces; and (3) developing software parts which are
generic in nature and which can be tailored, using the Ada language
itself, for a particular application.

One of the major barriers to an effective software reusability
*program is the need to conduct an in-depth domain analysis of the

application area in which the software is to be reused. A domain
"* analysis is an examination of a specific application area which seeks to
* identify common operations, objects, and structures. Domain analyses are

not cheap to perform. They require (1) an intensive examination of
existing software systems within the application area being studied, and
(2) personnel skilled both in modern software development techniques and
in the application area. Yet, to attempt to start a software reusability
program without adequately performing this analysis is as follish as
attempting to design a software system without performing an analysis of
the software requirements.

. o3.8

.. ,. 387~5*55 ~* *-. - -. ".. 5

= %

One of the thorniest issues which arises in every reusable software
effort and which can cause a total failure of the effort is the need to
enforce the reuse of parts. Without reuse, reusable software parts
become an exercise in futility and any additional cost to develop
reusable parts (as opposed to one-shot code) cannot be amortized.

Bluntly stated, programmers do not like to reuse software. There
are a number of reasons for this attitude. Programmers often: (1) feel
that reusing parts lessens their creative role in the development of
software systems; (2) have little faith in the correctness of reusable
parts; (3) are not aware of the existence of reusable parts; (4) find the
software parts more complex to understand and/or reuse in comparison to
developing new software; and (5) feel that they can build a better part.

The key factors in overcoming the reluctance of programmers to L
reuse prebuilt software parts are discipline, knowledge, tools, and
management comtment. A successful reusable software program must
involve the imposition of a high degree of parts usage discipline within

I the organization. This discipline must be enforced by reviews and
* audits. Programmers must also have the knowledge that parts exist and

that they have been validated. Just as hardware designers are expected
to know which parts are available, we should also expect software
engineers to know about software parts. Tools are an essential aspect of
a software reusability program because they serve to relieve the software
engineer of the mundane mechanical chores associated with using parts and
also to increase their productivity. These tools should facilitate the
retrieval of appropriate parts, the generation of new parts, the
composition of software systems with existing parts, and a wide variety
of other functions relating to parts usage.

The reuse of software parts offers the promise of dramatic
increases in software development and maintena e productivity. Yet this
promise can only be achieved if an organization is working in an
application area which has a significant degree of commonality and can
put in place the tools and methods needed to enforce a software parts
engineering discipline.

3. SUMMARY

During the first five months of the CAMP program, the tasks
performed by the CAMP teams were (a) to determine if sufficient
commonality exists in missile flight software systems to justify the
construction of reusable software parts written in Ada; (b) to develop a
method of specifying the requirements and design of the software parts;
(c) to develop a cataloging scheme for the software parts: and (d) to
examine software generation technology in order to determine the
feasibility of an automated software parts composition system. Sections
II through V present the detailed results of our work in these areas.

*i The following is a summary of those results.

388

-. .". . .- '. .
r.- ,* 2. Q:". .. .- ' : " . -_.f ._' P . . " . , _ . . .-J' ' . ' ...I - . . .'- P- ; ¢ , -, ' ' ' ' ' ' -. ' . . ' - , , " , - ":' . . , ' -, . " . - " ' -

* ~ 3.1 CAM Missile Selection

A detailed analysis of the missile software domain was performed in
which ten missile software systems were examined (see Exhibit 1)
including air-to-surface, ground-to-air, and ground-to-ground missiles.
Paragraph 1 of Section II presents more details on these missile software
systems.

(1) Flight software for the Medium Range Air to Surface Missile
(ACG-109H) .

(2) Flight software for the Medium Range Air to Surface Missile~~~~(AG M-l0 9L).•"::]

(3) Strapdown inertial navigation program for the Unaided Tactical
Ouidance Project.

(4) Guidance and navigation program for the Midcourse Guidance
demonstration.

(5) Flight software for the Tomahawk Land Attack Missile (BGM-109A).

(6) Flight software for the Tomahawk Anti Ship Missile (BGM-109B).

* (7) Flight software for the Tomahawk Land Attack Missile (BGM-109C).

(8) Flight software for the Tomahawk Land Attack Missile (BG4-109G) .

(9) Flight software for the Harpoon Missile (Block iC).

(10) Safeguard Spartan missile.

EXHIBIT 1. The Missile Flight Software Set

3.2 CAMP Parts Classification

The information on the CAMP missile software systems was obtained
from their software requirements and software design documents. An '.

analysis of the requirements documents was performed to identify the
*- domain dependent parts which could be constructed. Domain dependent

parts are those which provide functions which are unique to the missile
flight software area (or a highly related area such as avionics). An

" analysis of the software design documents was performed to identify the
-" domain independent parts which could be constructed. Domain independent

parts are those which provide functions and objects which, while highly
relevant to the missile flight software applications area, also have
applicability to a wide number of other areas. Exhibit 2 depicts a
breakdown of the types of parts in these two areas. This taxonometric

" breakdown is explained in more detailed in paragraph 2.2 of Section II.

389

~• ". ."

DOMAIN DEPENDENT PARTS o DATA PACKAGES
-- Data Type Packages
-- Data Constant Packages

o EQUIPMENT INTERFACES
o MISSILE FUNCTIONS

-- Primary Navigation Operations
-- Ancillary Naxigation Operations
-- Guidance Operations
-- Mission Control/Sequencing
-- Warhead Control
-- Telemetry

, DOMAIN INDEPENDENT PARTS o PROCESS CONTROL MECHANISMS
o COMM1UNICATION MECHANISMS
o ABSTRACT PROCESSES
o ABSTRACT DATA STRUCTURES
o MATHEMATICAL FUNCTIONS

-- Matrix/Vector Functions
-- Geometric Functions
-- Trigonometric Functions
-- General Functions

o GENERAL UTILITY

EXHIBIT 2. The CAMP Software Parts Taxonomy

In addition to classifying parts by the their type as just
discussed, it was recognized that three levels of parts were needed, see
Exhibit 3.

CAMP PARTS

Meta Parts

Simple Parts Generic Parts Schematic Parts
as-is parts tailorable parts generatable parts

390. .. ,

, ,..-" .. .,

"[390 "'

4-.

* - EXHIBIT 3. Software Part Levels

A simple part is a software part which is capable of being reused
as s'.In other words, these parts wudcorrespond to Ada procedures,

taskcs, and packages which would be 'withed' into an Ada program without
any modification. An example of this type of part would be a simple
mat-hematical function.

Unlike simple parts, a meta-part cannot be used as it exists.
Rather, it must be customized to a particular application. In later
sections of this report the use of the software generation system to
perform this customization will be discussed. A generic part is a

* template from which a number of specific parts can be obtained by means
* of the Ada generic facilities. These are parts in which the

parameterization of the part conforms to the capabilities of an Ada
*generic unit. One example of this level of part would be an abstract

data structure such as a generalized First-In-First-Out (FIFO) queue in
which the type of the data objects to be queued would be supplied and a
specific FIFO queue part would be instantiated for that situation.

A schematic part is a set of part construction rules which is used
to generate a number of specific parts. Schematic parts differ from
generic parts in two important aspects: (1) the generation of specific
parts from a schematic part can not be achieved by means of the Ada
generic facilities; and (2) there is no code to look at until a specific
part is built. A relatively simple example of a schematic part would be
a finite automaton which requires the association of an action with a

Sstate transition (these types of finite automata are usually referred to
as Mealy machines). The requirement that actions be associated with
state changes cannot be realized in Ada even with its generic facilities
because Ada does not have a variable procedure data type. However, the
structure of such a part is straightforward. Therefore, the schematic

* construction rules would be used to build an Ada unit which meets the
needs of the user.

Paragraph 2.2 of Section II contains a more detailed description of
* the CAP software parts classification.

3.3 CAMW Parts Identification

In the initial phase of the CAMP project the investigation of
domain independent commonality has proceeded at a faster pace then that
of domain dependent commonality. This is due to the fact that the

* investigation of the domain dependent areas (e.g., navigation, guidance,
* etc.) has required much more intensive, up-front analysis.

In the case of domain independent parts, many of the common
operations and objects identified have had a foundation in 'classical'
computer science. Abstract processes, abstract data structures,
communication mechanisms and other devices of this type have been
thoroughly investigated in other application areas. The major task of

* the CAMP team was to analyze the CAMP missile set and identify which
mechanisms were needed, and which variants of the mechanisms were

* . required.

391

,:"...

At the current time, we are near the completion of the process of
identifying domain independent parts. The next step is to begin the
formal specification and design of the identified parts in these areas.

a In the domain dependent areas, we have drawn upon the expertise of
a large number of missile system engineers in order to identify both
functional comonality and architectural commonality. At the current
point in our study we are near the completion of our analysis of the
primary navigation operations, and are in the midst of the analyses of
the ancillary navigation and guidance operations. In all cases to date,
we have been able to identify a large number of common operations at the

• "functional level. In both the primary navigation and ancillary
navigation areas we have also been able to identify common
architectures. We expect this trend to continue in our investigation of
the other functional areas.

The common domain dependent and domain independent parts identified
up to this point are described in paragraph 2.3 of Section II.

3.4 CAMP Specification Technique

As mentioned earlier, it is important that the users of parts have
a good degree of knowledge about the parts in order to establish their
confidence in them. Among other items, the part user must be able to
determine the requirements of the part (i.e., what the part is suppose to
do and how well the part is expected to perform) and the design of the
part (i.e., how the part accomplishes its requirements). The design
knowledge would ideally not have to be known by the user of the part, but
to overcome the programmer's reluctance to use parts, we consider this to
be an essential aspect of part usage.

To this end, the CAMP team developed a method of specifying the
requirements and design of the missile software parts. This method had
two objectives: (1) it must be amendable to typical military
documentation, and (2) it must facilitate communication. For this
reason, two complementary approaches were taken. The first involved a rV.
textual specification technique which would be compatible with the new
Military Standard SDS. The second involved a graphical notation which
would be used to supplement the textual method and would serve as a

': better communication mechanism. The graphical technique which was
devised was developed by extending the Ada graphical notations developed
by Grady Booch and Ray Buhr.

3.5 CAMP Ada Parts Cataloging Scheme

Later in this report the use of advanced techniques for the
generation and composition of software parts will be discussed, but, the
fundamental first step in tooling-up for a software reusability program
is to provide a software parts catalog. Such a catalog serves several
purposes: (1) it ensures that an organization has an institutional memory
of the parts; (2) it is an essential vehicle in disseminating knowledge
of the parts to the software engineers; and (3) it is a cornerstone of
any software parts composition system.

392

** * ~' . . **• *

The approach taken on the CAMP program was to develop a method of
describing Ada missile software parts which would facilitate the rapid
access and use of the parts. Note that the CAMP software parts catalog
was specifically designed for parts which were written in Ada and for the
missile flight software domain. No attempt was made to make this catalog

4more general (e.g., handle parts written in other programming languages
or for other application areas). As it turned out, it would not be
difficult to generalize the resultant catalog for other applicationdoma ins.•: ..

Two types of information are included in the CAMP parts catalog. .,

i:. Search informastion is data which is provided primarily to help catalog
users find the right part (e.g., a list of keywords, the taxonometric
type classification of a part, etc). Descriptive information is data
that helps the user decide, once a part is found, whether that part is
indeed suitable for his needs (e.g., an abstract, a list of projectsusing the part, etc.) .':

One critical design decision made during the develop of the CAMP
parts catalog was that the catalog should not repeat information
contained in the specification portions of Ada library units. Rather, it
should contain more abstract, application oriented information.

Exhibit 4 depicts a stumary of the information in the CAMP parts
catalog which is described in more detail in Section IV.

3.6 CAMP Software Generation Technology Evaluation

In order to determine the feasibility of automating the generation
of missile flight software systems, the CAMP team reviewed both existing
software generation systems and the technologies which have potential in
this area. Exhibit 5 depicts the existing systems which we examined.
Descriptions of these systems are contained in Section V. Exhibit 6
depicts the technologies which we reviewed.

3

- ..'

,..

393":

... :..4

Part and Version IDS The part id and version number together
form a unique identifier for the part

Name A brief meaningful name for the part
Abstract A description of the part which describes

its function, and intended usage
Category The part's taxonometric classification
Type Indicates whether the part is a

subprogram, package, or task
Level Indicates whether the part is a simple

part, generic part, or meta-part
Class Indicates whether the part is a

specification or a body
Keywords A list of meaning keywords
Development The date the part was cataloged
Developer The name of the person or organization

who developed the part
Development Project The project for which the pasrt was

originally developed
Development Stage Indicates the part's completion status
Verification Status Indicates who verified the part
Units Withed Delineates other parts Withed are used by

a part
Withing Units Delineates other parts which use a part
Usage Delineates the projects using a part
Code Location Contains the location (e.g., file name) A:K'

of the part code or code constructor
Security Indicates the security classification of

both the part and Its catalog entry C
Others Various information concerning its

accuracy, its timing, its storage
requirements, its hardware dependencies,
the availability of documentation, etc.

EXHIBIT 4. Parts Catalog Attributes

C.o,

394 .

|Z

,-C'- .C

'. • % - f.o

'oC.

.i . ,.- -'".'.-'i-' -" 'i-< ' '-'. '""-" -".-.-. .-" -" -"." -" -" --.. ".. ".-.. . . .".. . . .". .

4<A.

DCACO University of California, Irvine
USE.IT Higher Order Software
DARTS General Dynamic
PSI Stanford University
SAFE University of Southern California
CHI Kestr' Institute
Programmer's Apprentice Massachusetts Institute of Technology
IESA Kestrel Institute
LADDER, LIFER & DEDALUS SRI
LUNAR Bolt, Barenek, and Newman
RENDEZVOUS..................... IBM
MODEL University of Pennsylvania
PROTRAN........................ IMSL
SREM........................... U.S. Army Ballistic Missile ATC
PSL/PSA ISDOS, Inc.

EXHIBIT 6. Software Generation Technologies

Very High Order Languages (VHOL) Automatic Programming
Artificial Intelligence (AI) Expert Systems
Data Base Management Systems (DBMS) Domain Analysis
Syntax-Directed Translation Natural Language Interfaces
Graphic Specification Languages Formal Specification Languages
Transformation Systems Deductive Systems
Custom Tailoring Systems Text Generation Systems

EXHIBIT 6. Software Generation Technologies

As an aid for evaluating the aforementioned tools and technologies,
we developed a model of an ideal software generator. Such a system would
provide the facilities for automating the processes depicted in Exhibit 7.

Parts Identification The process of selecting a part, or
set of parts, from a set of
pre-existing parts for a specific
application.

Parts Creation The process of creating a part.
Parts Instantiation The process of constructing an

instantiation of a specific part.
Parts Generation The process of constructing a

specific part from a schematic part
by means of a part construction
scheme.

Parts Construction The process of manually creating a
specific software part.

Parts Composition The process of integrating parts into
a software system.

EXHIBIT 7. Facilities Provides by an Ideal Software Generator

395
p°°

.... . .'* -.. . ,

*Several os to

key observations which were made during this evaluation
process are summarized in Exhibit 8 and discussed in paragraph 2.1 of
Section II.

The approach towards which the CAMP team is gravitating is one
which was identified by our own work on the CAMP commonality study. As
we identified various parts, we realized that the most difficult task in
using the parts would be to identify what specific part was needed.

In the case of a simple part, this involves mapping the missile's
requirements onto those of the part. In the case of a generic part, this
involves the same activity as with a simple part plus determining the
correct parameterization for the instantiation of the part. In the case
of a schematic part, this involves a similar identification process but
an even more complex parameterization process. For example, once the
user has determined that a strapdown inertial navigation system is needed
and a schematic part exists which will generate the architecture of such
a system, the user will have to specify all the information to tailor the
generated part for his application.

(1) The use of a formal specification language as an interfacing
mechanism to a software generator will severly limit the use of the
system.

(2) The concept of a universal (i.e., domain independent) software
generator is not practical for the CAMP domain due to inherent
inefficiencies of the code produced.

(3) Few existing software generation system have the capability of
reusing parts.

(4) While there are many experimental software generation systems, many
of these systems are not production quality, and will not be within
the foreseeable future.

EXHIBIT 8. Observation From the Technology Evaluation

As we worked with the various missile engineers we found ourselves
asking questions such as "When do you want to use direction cosine versus
quaternions?" From asking these "In what situations do we want to use
X?" questions, we discovered that there does exist a body of knowledge
-which can help guide the missile software engineer in his development of
the software.

This knowledge consists of factual rules and heuristics. An
examle of a factual rule would be "If a data object (larger than one
word) must be ac'essed in write mode by more than one asynchronous
process, then it must have some type of mutual exclusion protection." An
example of a heuristic, which is akin to a rule-of-thumb, is "If a
missile software system must interface with a particular equipment
peripheral, then it probably will need some type of built-in-test
function for that interface."

396

...

.-..

Given that knowledge does exist about the construction of missile
softwasre parts, we want to be able to formalize this knowledge. One
technology which has recently emerged from the laboratory and is now in
common use is that of expert systems. An expert system is a software
system which emulates the manner in which humans reason about problems.
It provides facilities for incorporating both factual and heuristic
knowledge and for drawing inferences from this knowledge.

We are currently exploring the use of such an expert system in two
complementary areas -- Automated Parts Identification and Automated Parts
Constructions.

Section V contains more details on our work in this area.

4. CONCLUSIONS

We believe that our work to date has indicated that there does
exist a significant amount of commonality between missile software
systems and that a pragmatic method does exist for automating some of the
software development tasks using these parts. ,-.

The use of the domain independent and dependent parts discussed
earlier and described in more detail later in this report, would allow
the DoD missile software development projects to achieve the benefits
discussed in the earlier part of this report.

* The use of an expert system in the role of an automated parts
identifier and constructor would greatly facilitate the implementation of
a parts engineering discipline.

From our discussion with MDAC-STL missile engineers and software
engineers and other non-MDAC experts, we firmly believe that the systems
we have identified are both feasible and of value. We have adopted an
apprcach which balances state-of-the-art technology with hard-nosed
engineering values which we believe will result in the design of a
system which will be used. Although this might seem like a modest
statement, one of the largest pitfalls of this type of research is the
development of a system which, while technologically "fun", is too

* difficult to use.

397

-°

N
RESUME

DR. DANIEL G. MCNICHOLL

Position

CAMP Program Manager; Technical Specialist, Electronics (Computer Systems and Software
Engineering)

Education
PhD Computer Science, University of Missouri at Rolla, 1982.
MS Computer Science, University of Missouri at Rolla, 1980
BS Computer Science, Pratt Institute, 1972.

Experience

Since joining MDAC-STL in mid-1982, Dr. McNicholl has been involved in the develop-
ment and evaluation of software engineering methodologies and tools, and in the support of
ongoing projects in the areas of database design, software development, management, software
cost estimating, and the use of simulation languages. He has been an active participant in the
development and use of the MDAC-STL Ada Design Language (ADL). In addition to Dr.
McNicholl's responsibilities as CAMP Program Manager, he heads the Software Technology .
Group, where he is responsible for planning and coordinating programs designed to facilitate
the transition of MDAC-STL software engineers to Ada.

Dr. McNicholl is an Adjunct Assistant Professor of Computer Science at the University of
Missouri - Rolla Graduate Engineering Center in St. Louis, teaching evening courses on infor-
mation systems, programming languages, and operating systems.

He is a member of ACM and the IEEE Computer Society. He is an active member of the
IEEE Computer Society Technical Committee on Software Taxonomy, and participates in
corporate-wide Ada and related working group meetings at McDonnell Douglas.

398

. . .-- - - - - - - - - - - -- S.--" -

* -

Enclosure (3)
UNcLASSFIED Reference: Commerce Business

Synopsis 0035 An Overview of the

Common Ada Missile Packages (CAMP) Program

Presented 6y Dr. Daniel G. McNicholl ..
CAMP Program haier
McDonnell Douglas Astronautics Co.
P.O. Box 516, St. Louis, MO 63166

W Work Sponsored ny Aeromechanics Division
Guidance & Control Branch
Air Force Armament Laboratory
Eglin Air Force Base, Florida

Government Program Manayer Christine Anderson

ACM SIGADA MEETING ACoO.

November 25 - 30, 1984

399

°' -

LIJcLASsFIEO

CAMP OBJECTIVES

CAMP is a 12 month study designed to determine the feasibility of

@ Reusable misile lizh& boftware components written in Ada -

CAMP Commodlity Study

s An automated software generation system with facilities for parts
composition - CAMP Software Generatn System Study

ACM SIGADA MZTING
Novmber 25 - 30, 19114

400.

.1"*.?

r-.

.. ~400 ..

o. %, . . * . . - .• * . .

CAMP DOMAIN ANALYSIS

REQUREMET AESNSPCCONS

COMMON SOFTWARE
0 OPERATIONS 0 OBJECTS 0 STRUCTURES

ACM SIGADA MEETING
* November 25 - 30, 1984

401

S*~.

Lt4CLASSFIEO

$CAMP PARTS TAXONOMY

A..

DOMAIN DEPENDENT DOMAIN INEPENDENT

DAABSSABSTRACT ABSTRACT
PROCESSES DATA

.. (~INTERFACES-.-,-

.°-.

NIS IE F T

NAVIGATION AIRFRAME CONTROL PROCESS CONTROL AN U)I NCATION MECHAHXNISS]',
GUIDANCE PAYLOAD CDNTROL

r

LAUNCH CONTROL - NODE CONTROL

* ~ACM SIGADA MEETING W V4L

.., November 25 - 30, 1984

.-

.. 4-..

402, ,°

UNCLASSFIEO

CAMP PARTS CLASSIFICATION SCHEME

SIMPLE GENERIC SCHEMATIC
PARTS PARTS PARTS

"AS IS% ADA UNIT TAILORAILE A0A UNIT GENCRATABLE ADA UNIT

ACM SIGADA MEETING
November 25 - 30, 1914

403

p A~OAN EXAMPLE OF A MEALY MACHINE

A FINITE AUTOMATON WITH ACTIONS
ON THE TRANSITIONS

BIT X STATE NSCON TATE

OFF COMMAND

EEEN STT TERMS

NULA EVEN STWOD SIEETTERINRE

N........
SECS NA0

18

FIVE
INITILIZAION TATECOMMND SCS04

"UF.

'
-s

L9CLSSIE

MISSILE PROCESS TYPES

GRAPHIC REPRESENTATION

INITIATTON INITIATIO

CONTINUOU PROCESS

EVENTS CONOIT CONDITIOTNSN
TERMINATION

CONERNODU PROCE

TERNINATION

ACERIODC PREEN *WOEL 340L3

Novembi 2S - 0,E193

INTATO INTAINPOES ENNTO

405

M.4

MISSILE PROCESS* TYPES

ADA REPRESENTATION

"ea STARTPsew..Isuw, with CLoCK;
"ea body STAR _P**wZIw is ane CLOCK;

~sedr. Pecu fam sa speehbodea START w~w w
o-- i -SraRa snpat

*ad Preeuaaug NMXTJI'D.4 T&M -m CURRITSYSTD&_TIA~

"ely DURATION Q EXTTMb - CURRDIT.SYSTZMTRI)

* .~~~~ INCREMEN (NEXT-.T1MX BY o) levuw*4.wJarv.Pi ;

tea body START ec*&lmeo is Prossm, jam.
pos0dw s'e eamame is Ono"%"e;

N-eb 5 -30.,8

* Preeeea..:u
oni wo. Tia~esd406

LtNCLASSFIED

SAMPLE DYNAMIC DESCRIPTION
OF A PROCESS

Ka/manDatajProcessmnf process

initiation as a periodic task
by f41nrunwtmiaiz atin
at & IS hertz rate
with a priority of 1-
terminates when Imiializatm Compl/eted

initiation as an aperiodic task
by DatqaReadyToBeProcessed

when Mode = X1
or Sonze OtherEvent
with a priority of 11

ACM SIGADA MEETING "O"4"I
November 2S - 30, 1934

407

• V

uWQcLASSFIEO

THE PROCESS CONTROL METAPARTS

META PARTS PROCESS

____________________CONTROL

EXECUTIVE

TASK TASK TASK INITIATES
SHELL SHELL SHELL

gPROCESS P RO CE SS PROCESS ALR

AVAILABLE

USER SUPPLIED BODIES t
PROCESSES ~ ~ O

CONTROLLER L~~

ACM SICADA MEETING W~L

N ovemb"e 25 - 30, 1"84

408

TVV

;NCILASSFIEO

Wr OTHER CAMP COMMONALITY STUDY TASKS

a To specify the requirements for a subset of the common parts

*To develop the design for a subbet sof the common parts

*To develop a requirements and deign specification technique for reusable
Ada parts

*To use several of the new STARS measurement DID's

NoebrO6-3, 394-

409

LNLASFEDTHE CAMP SOFTWARE GENERATION

SYSTEM STUDY TASKS

@ To develop an Ada parts cataloging scheme

g a To develop the design of an w~toniated software generation system

n To develop the software requirements of the software generation system

a To examine the Japanese software reusability programs

a To evaluate the Automated Reasoning Tool (ART)

ACM SIGADA MESTINCp Navtwbew 25 - 30. 1914

410

-tiLASFED MISSILE SOFTWARE PARTS

CONSTRUCTION EXPERT (MSPCE)

APPLICTION ETA PRTSN

SOFTWARE
PARTS

411

.,.. .* *

.4NCASF-

... NCA~EOMISSILE SOFTWARE PARTS

IDENTIFICATION EXPERT (MSPIE)

ISTIL OFLAEVN
AND DESIGN

114ORMATION

1
NISSLCDONZ~f MISSILE SOFTWAAC USAGE

KNOULCE BASE

ACM SICADA MU4ETING '

Ndovembur 2s 3 0, 1984

412

-7

[-.7

:~, i:. ENCOURAGEMENT OF SOFTWARE REUSABILITY
S

George W. Mebus

RCA Advanced Technology Laboratories

Introduction: Past Problems and Obstacles

The DoD has correctly identified the The software community's FORTRAN
reusability of software as a necessary part of experience exemplifies the problems of non-
the software crisis solution, worth the cost reusable software. Large monolithic pro-
and effort of achieving it. Therefore, it has grams were typically highly specialized for a

been made an essential part of the Ada tech- single application. Where sections of code
nology. The aims of Ada address many other may have been useful for other applications,
pressing problems as well. Naturally, some there was great difficulty and danger in
of them affect and sometimes conflict with extracting them because of obscure depen-
the goal of reusability. dencies upon other areas of the program.

The specialization of this software was largelyThis paper considers other software sys- det h evsv s f"adwrd
tems that have displayed success in fostering inomto peccas v lus , peclar toand ainainig rusablit. Leson leaned information. Specific data values, peculiar to '-
and maintaining reusability. Lessons learned the intended application, were freely distri-
from such success, while not all directly buted throughout the source code.
applicable to Ada developments, should aid
our appreciation of what can be achieved It slowly became clear that the use of
under special circumstances, and guide our parameterized code could alleviate this kindfuture actions in managing Ada-based of problem. The existence of FORTRAN

software. libraries (e.g. the Math/Science Library)

Software Reusability demonstrates the benefit of even this first
step toward reusability. This illustration of

If software can be truly reusable. obvi- reusability was still hampered by more deeply
ous benefits accrue from not having to re- embedded features of the language. Among
invent the wheel. Productivity will be greatly them are the requirements for using specific
improved because of large reductions in the data types and data shapes. Such require-
cost and time to develop new software. ments still forced rewriting of potentially
Maintainability will be enhanced. Reliability reusable routines to suit the specific data
will be increased, not only because the needs of each new application. Thus, an
software has been previously tested, but also expansion of the parameterization idea
because it has been pressed into service, extended to all the potentially variable
Thus. it will have been validated by previous features of an application should be expected
use to achieve some degree of maturity (the to offer much greater relief for reusability
only good software is used software). Addi- pains.
tionally, experimental knowledge of the
reused software will have been established so Ada Features to Increase Reusability

that the printed documentation will not be The designers of Ada have incorporated
the only guide to successful utilization, a number of improvements. Generic units

To realize these benefits, the software with private types allow delayed definition of

and its supporting development systems must many specifics until compile time and some-
be easily accessed, easily understood, and times until run time. The additional provi-

easily incorporated into new developments. sions of attributes and delayed constraints
Any changes required for this incorporation further relax the need for specific detail in

Afor ahne compiled laguge Suppor incotheraAdamust be easy to identify, document and exe- the master version of the source code, while

cute. Ideally, the elements should be general maintaining the strong type checking desiredfore aIdeaedlngag.Sulrtinte denough to be used for a variety of related fracmie agae upr nteAa=:n" .'.(. applictoug it or a aety of elibrary system for free access to a large body

applications with no change at all.

413

7.' ,.,t" "" "" "" "" • """ "• "•" " ~.. •... .. .".... .'..... . . ."."-"r,'.

. ,,,. ,..,. ,,....,, .~~~~~....,,,....................... ,,... . .. *... ,,,-,-......

of software also encourages software sharing, data types: real, integer, and bit (Boolean)
The APSE and "one Ada" (no supersetting or data are present, but the system determines
subsetting) decisions that have become part the internal storage requirements for them.
of the Ada culture do still more to foster Clearly, strong typing is not a feature of
reuse of software from one host to another, APL. and some reliability is sacrificed for the
and the free reuse of tools as well as applica- benefits of generality.
tion programs. Generality is one of the strong points of
Experience with Reusable Software APL that supports reusability. The ability of

VOther systems supporting reusable any arithmetic function (primitive or defined)
software have been in existence for someor evenstwae.Tre a ben in extence fr sme results of logical functions greatly extends atime. There is a body of experience in the pr ga ' oeta tiiy wtotte ne

us fsuhsfwaedveomn sses program's potential utility without the need -
use of such software development systems for any change or respecification. Many
which should not be disregarded when con- functions are data independent in that they
sidering the broad approach to reusability. will work for any array. Shape transforma-
Success in one area will provide valuable tion functions are good examples: the runc-
insight into related but necessarily different tions named "reverse", "rotate", "transpose",
areas, especially in providing a vision of what "ee"ravel", "reshape", and others need only know ..
might be achieved in the future. Particular the shape of the arguments independent of
successful software development systems .-sc u st e e o n se data types. The shape information is part of
supporting reusability are APL and UNIX. the data; it does not have to be explicitly

The APL language has many charac- declared or specified at any time. Thus these
teristics that promote the reuse of software. functions are also defined for arrays of any
These features make it convenient, even dimensionality and shape including scalars
desirable, to access and use existing software and empty arrays. In this respect, APL is
and to develop reusable software as well. remarkably complete and consistent.
The following paragraphs characterize the Another instance of the same quality is the
language, the language support system, and two-argument arithmetic functions (add, sub-
the software that results from them. tract, multiply, divide, residue, power, loga-

rithm, minimum, maximum, the six rela- % L
APL is an algebraic language by its very tional and ten non-trivial logical functions.

nature. (The jargon of the APL community and others). They are defined to accept two
is also algebraic: primitive operators and number arrays of the same shape, and com-
user-defined programs in the language are bine their corresponding elements to produce
called "functions" and the parameters to them a result array of the same shape (the "equal"
are called "arguments".) Expressions are and "not equal" relational functions can also
algebraically manipulable. It is rich in accept character arrays). Also, if one argu-
inverse functions and algebraic identities. ment has only a single element, its value is
These enable some degree of algebraic pro- combined with every element of the other.
gram transformation, helping efforts at for- This operation is remarkably consistent and
mal proofs of programs. The underlying con- dependable. It also removes the need for
cepts of APL are few and simple. Because of writing N nested loops to perform the combi-
its many primitive functions, there is no pre- nation of two N-dimensional arrays. The
cedence established among them. The order code is much more compact and readable in
of execution is determined entirely by a this respect than that of any block-structured
right-to-left execution rule and the use of language including Ada.
parenthesis. The syntax of all functions.
primitive or defined, is either prefix (for one The above descriptions indicate that
argument) or infix (for two). Arguments, APL largely lacks arbitrary restrictions.
however. may be multidimensional arrays, so Name length, dimension size, number of
the restriction to two arguments is not dimensions, expression lengths are all unres- -.

severe. All data are rectangular arrays. so tricted. Only strict data incompatibilities
that they all have both value and shape. limit which expressions can be arguments to
Although array elements can be (encapsu- which functions. As a result, the ease of
lated) arrays, there are only two primitive combination of functions (primitive or

414

.... :,.2,,, , - ._ . . -. .. .__. .,- . ,-,_ _

ii.

defined) is unusually unemcumbered. Com- interpreted rather than compiled and all
bining functions to form short expressions storage is dynamically allocated. Interactive

" that perform significant processing steps is a debugging facilities are included in every
way of life in APL. Certain expressions are APL system. Data and defined function
seen to recur in APL code to the extent that objects are stored in "workspace? special files
they are often clearly recognizable at a that have analogies to Ada packages. A
glance, their purpose and operation well)COPY facility enables convenient sharing of
known. These have been called "idioms" of individual data or function objects, named
the language. Use of idioms is another groups of such objects, or entire workspaces.
unusual instance of reusability in APL This sharing can be done at software develop-
expressions. ment time or during execution. While not

enforced, there are standard workspace docu-
Extremely compact code is one of the mentation conventions that have evolved in

striking features of APL. The primitive the APL culture and are used in nearly all .. ,-
functions (over 70 of them, analogous to APL public library systems. APL libraries
reserved keywords in most other languages) from major vendors of APL services (e.g.,
are represented not by words but by special STSC and I. P. Sharp) are extensive. The
single-character symbols. This emphasizes ease of software sharing and access to an
the algebraic nature of the language. It also enormous variety of software has been the
says a lot in a little space. Compactness is key to the success of such vendors.
enhanced by the use of arrays as well. The
avoidance of program loops, with the absence It should come as no surprise that the
of counter variable initialization, incrementa- software resulting from the APL language
tion and completion specifications, is a clear and support environment is modular, gen-
example. The processing of arrays as single eral, and easily shared. The natural modular-
data items rather than having to specify ity stems in part from the syntax of defined
element-by-element processing in general functions being the same as for primitive
reduces code size and clarifies the code, functions. The valuable characteristics of
keeping it on a more abstract level. There is primitive functions (generality. .onsistency.
of course a corresponding reduction in intel- lack of restrictions, ease of combination) and L
lectual burden and improvement in readabil- their benefits in practice encourage the
ity (providing that the reader understands the software designer to develop defined func-
APL function symbols). tions with the same characteristics in order to

reap the same benefits.

While APL code is not often considered UNIX is a better known quantity in the
self-documenting (although some will claim main stream of software development. It has
it is) the compactness of the code offers been influential in the definition of the
some advantages to the documentation pro- APSE. With UNIX there is essentially one
cess. One line of code often accomplishes a "data type," the character string file. UNIX
significant step in the problem-level descrip- utilities typically have a clearly defined, sim-
tion of the processing. As in other pie job to do, producing files that can be
languages, comments can be placed at the easily processed by other utilities. This sim-
ends of executable lines. One comment per plicity, modularity, and generality of UNIX
line generally provides an excellent descrip- utilities, along with the "pipes" facility, allow
tion of the processing at the problem state- easy reuse of the tools in a great variety of
ment level. In fact, the code lines are often combinations. As a result, fairly sophisti-
developed from such statements of the prob- cated process are developed quite rapidly and
lem. To the knowledgeable user reader of reliably as UNIX command procedures.
APL, the occurrences of idioms also provide
some measure of self documentation. UNIX and APL have several common

Likecharacteristics that promote reuse. Generality
Like Ada. APL is not just a language in their operations and the data they process

"- but also has an integrated programming andb h n dmis a strong contributor. Support for modular-
execution support environment. Unlike Ada, ity in ooth the system facilities and in the
the programs (defined functions) are typically system philosophies also has a pervasive

415

. .%

effect. In addition, they are both interactive generic software is not small or easy.
with dynamic storage allocation. They handle . --,
many of the drudgerous "bookkeeping" The generality of APL's array handling
chores, freeing the user of much detail con- scheme is not shared by Ada. Ada does sup-

sideration. All of these make the software port the definition of arrays of arbitrary
development job easier, even enjoyable. dimensionality. However, initialization can .

only be done by successive vector value
Ada Comparisons and Contrasts assignments. Catenation is defined only for

-An obvi us major difference between vectors, rather than for arrays with the same-Ithe Ada system and the other described cross-section shape. And only Boolean
above is that Ada is a compiled language. operations can operate on arrays (necessarily

Another is the strong typing enforced by the Boolean arrays) to produce array results.
Identical kinds of processing for the arith-

compiler. The number of types is not small. metic functions can only be achieved byand is increased by the software developer as defiic ficopeat or each or a gen-
Ada encourages user-defined typing. For defining specific operators for each, or a gen-

most user-defined types, appropriate special eric unit to be instantiated for each.
operations will also be defined. The main
route to generality of operators is through > From this complexity, there is little
overloading. That is, multiple definitions of psychological incentive to produce the

the operation are developed, one for each apparent simplicity, consistency. and ease of
combination of parameter types. Then the functional combination so important to reusa-

compiler determines from the context which bility in the APL and UNIX systems. The
meaning of an operator is to be used. This burden is then on management to foster

form of generality is gained via complexity these characteristics in the produced code.

rather than simplicity. Conclusions

Ada's generic facility provides another Programming systems that support and
path to generality, but again, complexity encourage the development of reusable
characterizes its use. It is first necessary to software have been examined. The hall-
make all of the kinds of declarations required marks of simplicity, generality, consistency.
for a specific instantiation of a generic unit, and ease of functional combination were
using private types rather than defined types. shown to be important in such development.
Then additional information must be supplied Ada also supports software reusability, but
to inform the compiler that the specific infor- lacks these features because of other priori-
mation is to be supplied to make the usable ties. This lack makes the development of
product. This is well worth the effort when reusable software in Ada a much larger job
several instantiations of the generic software requiring larger resources and strong manage-
are used, but the initial effort to develop that ment to achieve the benefits of reusability.

416

SV

................................. ... ,

" p.'

--. RESUME

GEORGE W. MEBUS

George W. Mebus received a B.S. degree in Electrical Engineering from the University of
Pennsylvania in 1962, and MSE degree in Electrical Engineering (Computer Option) in 1964
from the University of Michigan. He completed all course requirements for a PhD degree in
Computer Information Sciences at the University of Pennsylvania. I.

Mr. Mebus has been with RCA since 1983. He is currently a Unit Manager in the
Software Engineering Laboratory of RCA's Advanced Technology Laboratories. Work under
his supervision includes development of Ada risk retirement tools, Ada Program Design
Language and processors, a retargetable Ada compiler for horizontally microcoded computers,
and formal verification techniques and tools used in verifying the security of distributed com-
munications systems and secure operating systems.

Prior to joining RCA, Mr. Mebus worked for twenty-four years at the Naval Air Develop-
ment Center, Warminster, Pa., in digital and computer systems. From 1973, he performed
software development at the Advanced Software Technology Division of the Software and
Computers Directorate where he developed tools and techniques to support automated design,
development, testing and maintenance of major Navy fleet software systems such as the Light
Airborne Multi-Purpose System (LAMPS). He was the Division Team Leader in development
of the Facility for Automated Software Production (FASP), a Navy integrated software
engineering environment for the LAMPS project from 1976 to 1981. He was also a member of
the Navy's Ada Evaluation Team.

Mr. Mebus is a member of the following professional associations:
IEEE, IEEE Computer Society. ACM. ACM SIGSOFT, ACM SIGAPL, Tau Beta Pi.

He has been awarded U.S. Patent No. 3,551, 664 for the design of a Bearing Angle Computer.
Mr. Mebus has a Secret clearance. .1 '.

Selected Publications

"Computer Languages--A view from the top, "RCA Engineer. Vol. 29, No.
I- Jan/Feb 1984

"A Software Engineering Environment for Weapon System Software:
Functional Description for the Code and Test Phase," NADC Report No.
NADC-82183-50: Naval Air Development Center: 30 November 1982

'Mathematical Description of AADC (All Applications Digital
Computer)" NADC Report No. NADC-75093-20: Naval Air Development
Center: 12 September 1975

'Laminar Extension: An Overlooked Capability and the Search for Its
Prooer Home." APL Quote Quad, Vol. 9. No. 4: June. 1979 r

"Reducing Tips for Fat 700 Programs." Proceedings of first Wang
SW AP Symposium: January, 1973.

Generality is one of the strong points of APL that supports reusability. The ability of~ any
arithmetic function (primitive or defined) to accept real data, integer data, or even results of
logical functions greatly extends a program's potential utility without the need for any change
or respecification. Many functions are data independent in that they will work for any array.

Mai""

Shape transformation functions are good examples: the functions named "reverse", "rotate", 6

"transpose". "ravel", and others need only know the shape of the arguments independent of data
types. The shape information is part of the data; it does not have to be explicitly declared or '
specified at any time. Thus these functions are also defined for arrays of any dimensionality
and shape including scalars and empty arrays. In this respect, APL is remarkably complete and
consistent. Another instance of the same quality if the two-argument arithmetic functions
(add, subtract, multiply, divide, residue, power, logarithm, minimum, maximum, the six rela- .

tional and ten non-trivial logical functions, and others). They are defined to accept two number
arrays of the same shape, and combine their corresponding elements to produce a result array
of the same shape (the "equal" and "not equal" relational functions can also accept character
arrays). Also, if one argument has only a single element, its value is combined with every ele-
ment of the other. This operation is remarkably consistent and dependable. It also removes
the need for writing N nested loops to perform the combination of two N-dimensional arrays.
The code is much more compact and readable in this respect than that of any block-structured
language including Ada.

The above descriptions indicate that APL largely lacks arbitrary restrictions. Name length,
dimension size, number of dimensions. expression lengths are all unrestricted. Only strict data
incompatibilities limit which expressions can be arguments to which functions. As a result, the
ease of combination of functions (primitive or defined) is unusually unemcumbered. Combin-
ing functions to form short expressions that perform significant processing steps is a way of life
in APL. Certain expressions are seen to recur in APL code to the extent that they are often
clearly recognizable at a glance, their purpose and operation well known. These have been
called "idioms" of the language. Use of idioms is another unusual instance of reusability in
APL expressions.

Extremely compact code is one of the striking features of APL. The primitive functions
(over 70 of them, analogous to reserved keywords in most other languages) are represented not
by words but by special single-character symbols. This emphasizes the algebraic nature of the
language. It also says a lot in a little space. Compactness is enhanced by the use of arrays as
well. The avoidance of program loops, with the absence of counter variable initialization ,
incremenation and completion specifications, is a clear example. The processing of arrays as
single data items rather than having to specify element-by-element processing in general
reduces code size and clarifies the code, keeping it on a more abstract level. There is of course
a corresponding reduction in intellectual burden and improvement in readability (providing that ""
the reader understands the APL function symbols).

While APL code is not often considered self-documenting (although some will claim it is)
the compactness of the code offers some advantages to the documentation process. One line of
code often accomplishes a significant step in the problem-level description of the processing.
As in other languages, comments can be placed at the ends of executable lines. One comment
per line generally provides an excellent description of the processing at the problem statement
level. In fact, the code lines are often developed from such statements of the problem. To the
knowledgeable user reader of APL, the occurrences of idioms also provide some measure of
self documentation.

Like Ada. APL is not just a language but also has an integrated programming and execu-
tion support environment. Unlike Ada, the programs Idefined functions) are typically inter-
preted rather than compiled and all storage is dynamically allocated. Interactive debugging facil- "'"'
ities are included in every APL system. Data and defined function objects are stored in
"workspaces" special files that have analogies to Ada packages. A iCOPY facility enables con- .-

venient sharing of individual data or function objects, named groups of such objects, or entire
workspaces. This sharing can be done at software development time or during execution.
While not enforced, there are standard workspace documentation conventions that have
evolved in the APL culture and are used in nearly all APL public library systems. APL
libraries from major vendors of APL services (e.g., STSC and i.P. Sharp) are extensive. The

4181

I-

~~~~~~~~~~~~~~~~. . ..-.'.".. ..i. .. ;.-_..,......_.................................



ease of software sharing and access to an enormous variety of software has been the key to the

success of such vendors.

It should come as no surprise that the software resulting from the APL language and sup-
port environment is modular, general, and easily shared. The natural modularity stems in part
from the syntax of defined functions being the same as for primitive functions. The valuable
characteristics of primitive functions (generality, consistency, lack of restrictions, ease of com-
bination) and their benefits in practice encourage the software designer to develop defined func-
tions with the same characteristics in order to reap the same benefits.

UNIX is a better known quantity in the main stream of software development. It has
been influential in the definition of the APSE. With UNIX there is essentially one "data type,"
the character string file. UNIX utilities typically have a clearly defined, simple job to do, pro-
ducing files that can be easily processed by other utilities. This simplicity, modularity, and gen-
erality of UNIX utilities, along with the "pipes" facility, allow easy reuse of the tools in a great
variety of combinations. As a result, fairly sophisticated process are developed quite rapidly
and reliably as UNIX command procedures.

UNIX and APL have several common characteristics that promote reuse. Generality in
their operations and the data they process is a strong contributor. Support for modularity in
both the system facilities and in the system philosophies also has a pervasive effect. In addi-
tion, they are both interactive with dynamic storage allocation. They handle many of the
drudgerous "bookkeeping" chores, freeing the user of much detail consideration. All of these
make the software development job easier, even enjoyable.

Ada Comparisons and Contrasts

An obvious major difference between the Ada system and the other described above is
that Ada is a compiled language. Another is the strong typing enforced by the compiler. The
number of types is not small, and is increased by the software developer as Ada encourages
user-defined typing. For most user-defined types. appropriate special operations will also be
defined. The main route to generality of operators is through overloading. That is, multiple
definitions of the operation are developed, one for each combination of parameter types. Then
the compiler determines from the context which meaning of an operator is to be used. This
form of generality is gained via complexity rather than simplicity.

Ada's generic facility provides another path to generality, but again, complexity character-
izes its use. It is first necessary to make all of the kinds of declarations required for a specific
instantiation of a generic unit, using private types rather than defined types. Then additional
information must be supplied to inform the compiler that the specific information is to be sup-
plied to make the usable product. This is well worth the effort when several instantiations of
the generic software is not small or easy.

The generality of APL's array handling scheme is not shared by Ada. Ada does support
the definition of arrays of arbitrary dimensionality. However, initialization can only be done by
successive vector value assignments. Catenation is defined only for vectors, rather than for
arrays with the same cross-section shape. And only Boolean operations can operate on arrays
(necessarily Boolean arrays) to produce array results. Identical kinds of processing for the
arithmetic functions can only be achieved by defining specific operators for each, or a generic
unit to be instantiated for each.

> From this complexity, there is little psychological incentive to produce the apparent
simplicity, consistency, and ease of" functional combination so important to reusability in the
APL and UNIX systems. The burden is then on management to foster these characteristics in
the produced code.

419

V
................................- ,.

. . . . . . . . . . . . . . . . . .. .



Condusions.

Programming systems that support and encourage the development of reusable software
have been examined. The hallmarks of simplicity generality, consistency, and ease of func-
tional combination were shown to be important in such development. Ada also supports
software reusability, but lacks these features because of other priorities. This lack makes the
development of reusable software in Ada a much larger job requiring larger resources and
strong management to achieve the benefits of reusability.

I....
•

rr

' °

r

420

.,..-



%,..

LI.,

-AJ

LL..

cni

I-c

)1 0

4, Cd, _
L42



1-

W.. 

LAJU

U =

LLIU

L5.

C:) 4.) >-Ln

S4 ,I- LU I
-30P

Lai

tn V). >L &

_ LL 0

-CC L.

0W L 0

LU Cd422



I%

LUI

CCD

LLU

CCD

LU -

U.. I- - LUJ LUJ

oL CA ....

1CCL. 5 0

- > CA- V-

V 0

CA LU423



IL --1 w--. -. 7 R-.-.--. t.~.-- . . . .--

LL..

-JL

LiiJ

I-L

I- I- L

-LJ LLJ

-L Lii C

mi 0 w-

H2C 
I

u~ ~ - ~ 424

.i .- . . ..- i



ImI
ul.

to .6

lual w

i £ to

La 3m L-1

tu w aA w A
a. 2 L'-r a

ra a a "

.3 ~~~ .3 w t 3u.3 ~ - a a~

,.u w ...u 2 -w' 3
a iua co

~.uw fa ~ @

wo -41

LU 66. WI

93 2

owa w

00 U, -

C6 a

6. al425



'.I"

(00

oP 0
(0((4

u xw1

oo

WIC

o (to

a.Z~0 el

u IL

(0426



-. .. o tn .. %. ..

t4 am
,-~~/ .4 tQ

t-3 ~ ~~~~ rat a t l-

t4 W3Nh

£4 rd ca C. N

at b4 96 12.. CL 2t
3t. 1- .40

+ 4 + 4 + + 4 +. + . 4 44b, meo f 0
bq +4 + 1 + + +

bg Cl) b b C bc bq k q N q qb
C. Cl). C. C. P. E4 b

~be 4~.- ~ - .44 4~ W ~ .. 4 p.

~ 44

430
N U

catac
N3 

o.

ce ft 4c C

ta - . c - W) -M
to I.. b" 44 14t . 4 4 t o 2

Cl) at ) 14 S. c 4 W o

md 64p N~p it (z Z. 94 04 b
At w ).. % b4 cm~ b4) C64 C6 2tm

Cl) b* bqq e). h b.q bq be R h.' =2

42



LA

CC-,

I-

LLLU

LL- LA -

LL LUJ

U- (D U

~~-cc

U-- u L

-cc -c -3

U-L

I-L

-L L
aU L I-

LU - 428



COMPOSITION OF REUSABLE SOFTWARE S

John R. Meliby

"* Texas Instruments

1.0 Introduction (2) Internal data structures,

This paper summarizes problems associated (3) Exported data structures, and
with the composition of systems from reused 3.1 Interfaces
software, and demonstrates the feasibility of
software composition as a development tech- Anyone who has used standard Fortran sub-
nique. routine libraries knows that the routines are writ-

ten with wide, general purpose interfaces. This
* 2.0 Background means there are more parameters then are used I.

in a typical application, so in most uses of the
The process of reusing software involves routine one or more parameters are passed some

three separate functions, constant value and for all practical purposes are
not used. To make a routine widely reusable, the
interfaces should be general. On the other than,

(2) Determine the suitability the package's from the reuser's point of view, the interfaces
function/implementation, would be better if they are suited to his applica-

(3) Adapt the package or compose packages for tion. Ada gives us the means to achieve these
new systems. seemingly opposite goals. From the developer's

point of view the package is made general with a
The third step. manipulating packages once wide interface. As many reasonable parameters

L they have been located, is potentially the most are included to make the subprogram applicable
interesting, and it is an area where few tools exist to many uses. These parameters should be given

. to assist in the development process. defaults to cover the most common cases.
Rather than try to cover the entire domain When the user takes this subprogram he

of software reusability, such as design metho- may not have to use the general interface due to
dologies for the creation of reusable software, its Ada's named parameter association and the
collection into reusable software libraries, or the parameter defaults. For example, the SORT pro-
identification of a package for reuse, this paper cedure below has a parameter designed to let it
will discuss a limited topic. It will address some handle some general cases (although it is not a
of the problems associated with composing a sys- completely general sort). The user could specify

- tem by importing reusable software. how much of the array to sort, and whether to

First we will discuss the advantages of Ada sort it in ascending or descending order.
and some problems associated with reusing a sin- procedure
gle package. Then we will discuss the capability
of composing a new system out of reused pack- SORT(
ages. LIST:- ' IN OUT ARRAY OF STRINGS; '

"". 3.0 Software Importation O RF I
~TOP ELEMENT: '

The ideal reuse of software should involve INRRAY OF STRING RANGE
no recoding at all. This is not always possible but IN ARRAY OF STRING RANGE'LAST:
when packages are designed correctly, there
should be only limited modification of the pack- UPORDOWN
age necessary. IN DIRECTION

The three areas of concern in modifying the - ASCENDING):
reused package are:

One user might only want to sort the corn-:' ' ' - (1) Interfaces to the package, "
)Itas te cgplete array and always in ascending order. In this

429

........................................

............................................ .



case, the typical sort call would be: * Wrong data types,
* Data types which can be tailored (generics). and

SORT( LIST - INPUT ARRAY )- * Data types exported to calling systems. ".*.

and the defaults for TOPELEMENT and 3.2.1 Missing Functions

UP OR DOWN would be used. If the reused package is missing a necessary

In many cases the reused software does not function there is little that can be done other
have the proper defaults or does not have than writing new code.
defaults at all. The user may still be able to nar-
row the interface to this specifications by renam- 3.2.2 Incorrect Data Types
ing it. Renaming allows several options: FgwFrequently programmers will want to per- ",:
(1) A name more suited to the application, form similar functions on different data. The

(2) Alternate names for the parameters, and sort function above is written for

(3) New default values for the parameters. ARRAYOFSTRINGS but we might want to do
a sort of an array of integers. To convert this

So to do a sort always in descending order software we can recode it to another type.
rename:

It may be possible to automate this conver-
procedure sion. A RETYPE tool to do this might be given

a new type. so that it replaced
SORT DOWN) ARRAY OF STRINGS. RETYPE would also
LIST: have to check the operations on these newly
IN OUT ARRAYOFSTRINGS; typed elements so that they were still legal.

RETYPE might also require certain new func-
TOPE.YLEMENT: tions or operations be supplied to manipulate the
IN ARRAYOFSTRINGRANGE new type.
- ARRAYOFSTRINGRANGE'LAST: RETYPE would support the necessary type

UP OR DOWN conversion operations. In the sort example

- DESCNING m ARRAYOF INTEGERS. Depending on how
IN ESRCENING renames SORT: aoe e mgtcag h ye t

this type was originally implemented, RETYPE

Now he ew ort allis:may have to verify that ARRAY OF INTEGERS
is an array. or that the array's range is integer.

SORT DOWN( LIST - INPUT LIST )- In addition, RETYPE would check the operations
on the LIST parameter to see that the operations
were legal on the new type. To make these

3.2 Changing The Interface/Data operations legal, RETYPE might prompt for new

The previous actions are sufficient when the operations such as assignments or a function
proper interfaces and data structures are already for that type.
built into the reused software. In some cases the Obviously such an approach will not always
needed interfaces may not exist in the reused work. To convert a sort procedure to operate on
package. or the package may exist but may per- a linked list may not be possible without entirely
form the operation on the wrong type of data, recoding the procedure, depending on the type of
Initially this is likely to be common since few sort performed.
programmers write their software to be reusable.
As the use of Ada features such as generics, The final situation is that conversions of

parameter defaults, and renaming become more data may be necessary, they sometimes may be
common. it will be easier to reuse software, automated, and sometimes data conversions is

Unfortunately, the difficulty of learning Ada is insufficient to reuse the software. L...
" . going to pose the first barrier to overcome before

people begin to think of reusability. 3.2.3 Generic Data Types

There are several general type of changes A better approach is to make the data on
which the package is based generic. As a brief

Missing functions, example, a generic sort might force the type

430

• ~~~~~~.. . . .. . . . ............... ..............-.. .-, .. .. . ............- ..-...-.- :..-:.. _.2,..-.., .,.,-.. . ..- _ ....



sorted to be an array. The elements of the array, storage and assume the list to be in memory.
the array range, and the operation would be
generic parameters. A code fragment for this is 4.2 Packages
below.

4.2.1 Menu Input IL
GENERIC TI is currently finishing a package which

will accept a description of a set of data and
type INDEX is ( ); create software to generate a menu prompting a
type ELEMENT is private; user to enter this set of data.
type LIST is array ( INDEX ) of ELEMENT; The current system accepts batch or inerac-
with function" "(LEFT, Right in ELEMENT) tive input to describe the data set. It is proposed

return BOOLEAN; 
procedure SORT ( TABLE : in out LIST to extend the system to allow as input an AdaSrecord definition to define the data set. --

This is directly supported by so there is lit- r d o ea t
tie new to add here. 4.2.2 Record Output

3.2.4 Exported Data Types A simple conversion of the above package
would be a system which accepts an Ada record

The easiest way to treat data types exported and creates a package to output records of that
by the reused package is to consider them as type.
private types. In this case the primary operations type.
on object of that type are the operations provided 4.2.3 Control Menu
by the reused package. A proposed modification of the Menu Input

An example of that is the dynamic string sysi -n would create a control menu. This would
package stored in the Ada Repository or display a menu of actions on the terminal screen.
ARPANET. This package exports a type Each input would be matched with an action to
DYN STRING. In using this package, dynamic be performed. The action to be performed would
string objects can be created and then manipu- be in terms of one or more subprogram calls.
lated through the functions in the dynamic string
package. 4.2.4 Table Storage

Like generics, this is inherently part of the A simple storage system would be simple to
Ada language, and should be familiar to anyone create. This would be generic on some data type,
as an application of information hiding tech- and would provide the facilities to store and
niques towards reusability. recall items of that type.

4.0 Software Composition The facilities provided might be: Create-
Table. Store-Item, Locate-Item, and Delete-Item.

The eventual goal of people looking at
application generators is to create software 4.3 Creating The System
without programming. It should become easily
possible to automate some software projects with The ability to generate this system lies in
a few "software composition" tools and a reason- the ability to create instances of each of the
able library of reusable routines, above packages tailored to our application. The

creation of these tailored packages is either by
We will demonstrate this by giving a instantiation of a generic or the package itself is

scenario for development of a program with very generated by a program designed for that pur-
little coding. First we describe the problem, then pose.
some packages (both existing, and planned) to be
used in the system, and finally describe how the The steps in creating the system are:
system is created. (1) Write an Ada record describing the address V

data structure.
4.1 System To Be Built (2) Write a statement to instantiate the Table

We want a simple address/phone list pro- package for this record.
gram which will allow names, addresses, and (3) Run the Menu Input program to generate a
phone numbers to be entered and retrieved. To package for inputting this record.
be brief we will ignore the problem of long-term r

431

."*



(4) Run the Record Output program to gen- A small application has now been created
erate a package to output this record. with very little programming. Even more impor-

(5) Run the Control Menu program to generate zanily, there is almost no place where an error ,
a menu package offering options for can occur.
Table.Create, Input (reading and storing the I.
record), and Output (Locate and Output the 5.0 SUMMARY
record).

(6) Write a main unit to start the Control We have tried to describe some typical
Menu packages, and some characteristics of packages NP

which would enhance reusability. We have
(7) Compile the packages and link the system. shown that software systems can be constructed

Of the seven steps, three involve writing with very little programming and with very little
code. The generic instantiation is basically one opportunity for error. This demonstrates the via- '
statement, and the main unit should be very bility of software reusability as a productivity-
short. enhancing technology.

432

•. . . . . . . . *.

' .. . . . . . . . . . . . . . .



TEXAS INSTRUMENTS interoperability and transportability of
- - ADA TECHNOLOGY BRANCH APSE tools. TI has a representative in the

Common APSE Interface Set working
group and a representative in the Guide-

1.0 INTRODUCTION lines and Conventions (GAC) the working

This is a summary of expertise and group. As part of the KIT effort, TI will

qualifications for participation in the STARS produce, under Naval Ocean Systems

Workshop on Reusable Components of Applica- Center Contract N66001-82-C-0440, the

tion Software. APSE Interactive Monitor (AIM), a %
software tool which will provide a virtual

Texas Instrument's Equipment Group is a terminal interface (multi-windowing,
15,000 person organization based in Dallas, multi-tasking) to an APSE user. Due to
Texas, whose business is Government Electron- our participation in this program, TI has
ics. The following briefly summarizes Texas attained significant expertise in both the
Instruments experience in the areas of Ada and ALS and ALE KAPSEs, and was selected to
reusable software. This finishes with the resume participate in the development of the Com-

i of John Mellby, the author of these documents mon APSE Interface Set (CAIS). Our
and TI's proposed representative to the representative has been responsible for - ,

Workshop on Reusable Components. defining CAIS I/O interfaces, beyond those

Enclosed separately is a position paper on defined by the Ada language, including:
the composition of reusable software. (a) a virtual terminal interface, and

1.1 Ada Technology Branch (b) a mechanism for performing Interprocess %1. 1 aCommunication
TI management, recognizing the DoD's
Tintn anagementya reg nizing e the (3) Currently participating (by invitation) in the

intent and policy as regards Ada, has created the
Ada Technology Branch within the Advanced Guidelines and Conventions working group

Computer Systems Laboratory. The Ada Tech- (GACWG) of the KIT. The objectives of

nology Branch is chartered to enhance Equipment this working group are:

Group's competitive position with regards to Ada (a) to develop requirements for APSE Intero-
and is divided into the following sections: perability and Transportability (IT),

- Compiler Development (b) to develop guidelines, conventions, and
- Real Time Issues and Methodologies standards to be used to achieve IT of
- Tools and Environments APSEs,

Training and Education (c) to develop APSE IT tools to be integrated
into both the ALS and AlE,

(d) to monitor ALS and ALE development
1.2 MIL-STD-1815A (Ada) LANGUAGE efforts with respect to APSE IT. and,
EXPERIENCE

(e) to develop and implement procedures to
Since 1977. Texas Instruments Incorporated determine compliance of APSE develop-

has been engaged in numerous research and ments with APSE IT requirements, conven-
development programs involving the design, tions, and standards.
implementation, and support environments for
Ada which uniquely qualify us for this program. (4) Currently participating in the APSE Evalua-
Here are some highlights: tion and Validation Task. This is a tri-

service activity with primary responsibility
11) Active participation since their inception in assumed by the Air Force

the Ada Implementor's Group and (AFWAL/AAAF,. Its goals are to create a
AdaTec/SIGAda, the ACM special interest validation suite for APSE conformance to
group on Ada. TI ,s an institutional spon- the CAIS and provide a framework for the
sor of SIGAda. evaluation of tools for APSEs as well as

(2) Currently participating (by invitation),in the evaluation of complete APSEs for potential . -

Navy led KAPSE Interface Team (KIT) consumers of Ada/APSE technology. Our
whose goal is to evaluate the suitability of involvement was through the submission of
KAPSE interfaces with regard to a position paper to the first annual E and V

433

7,e... e.



Workshop, held 2-6 April 1984 at Airlie, Reusable Software. As part of this, a paper, V
Virginia. Our representative to that meet- "Issues in Software Reusability" is being prepared
ing is considered a member of the E and V for publication in Ada Letters later this year.
distinguished reviewers group which will The contributing authors are: Bill Jones (NASA
provide feedback to the E and V Team. Ames), Herb Krasner (MCC), Steve

(5) Presently delivering an extensive in-house Litvintchouk (MITRE), John Mellby (Texas
Ada training program, using the Data Gen- Instruments), Jerry Mungle (TRW), and Herb

eral Ada Development Environment. Wilman (Raytheon).

(6) Presently working on a code generator for 1.3.2 Components Library-
the Telesoft Ada Compiler. This will be
VAX hosted and produce code for the The Advanced Computer Systems Labora-
T19900 microprocessor family. tory of TI has created a components library to

house software packages (not necessarily Ada)(7) Reviewed and commented on METHOD for potential reuse. "-

MAN, the AJPO software methodology peiru
document. 1.3.3 Ada Repository -

(8) ACSL personnel are using object-oriented Richard Conn, a Texas Instruments
design (BOO83) in the APSE Interactive employee, has created and is maintaining the Ada
Monitor project. Additionally, Ada as a Repository. This is a facility on the SIMTEL20
PDL (program design language) is also machine on ARPANET which houses Ada pack-
being used on selected test projects. ages and tools. All tools are to be available to

(9) Currently developing our own PDL. the public through the ARPANET. For more
(10) ACSL has been awarded a contract for the information contact Rick Conn at

development of five tools to be written in CONN%EG@CSNET-RELAY, for ARPANET
Ada for the WWMCCS Information System or CSNET mal.
upgrade. These tools are a Virtual Terminal,
Forms Generator, Spelling Checker, Ada 1.3.4 Ada Tools For WWMCCS Improvement
Style Checker and a Screen Generator. System -

(II) ACSL leases a Data General MV/10000 The Ada Technology Branch is currently *,x.. -
computer system running the Ada Develop- working on five tools for the WWMCCS
ment Environment (ADE). The validated Improvement System, as mentioned above. This
Ada compiler which runs under the ADE is includes packages specifically designed for tran-
the principle Ada compiler used by ACSL sportability and reusability such as a package pro-
personnel, viding Virtual Terminal Interfaces, and packages

which create other packages to allow menu-
1.3 Experience In Reusability driven input. All these packages will eventually

reside on the Ada Repository on ARPANET.1.3.1 Future APSE Workshop - .

TI was represented at the IEEE's Future
APSE Workshop at Santa Barbara, CA in Sep-
tember of 1984. John Mellby, the TI representa-
tive, was a member of the working group of

434

.. . . . . . . . . . .



• .o.

RESUME

JOHN R. MELLBY

EDUCATION

Ph.D Computer and Information Science, Ohio State University, 1980.
B.A. Mathematics and Physics, St. Olaf College, 1973.

Dr. Mellby is currently a member of the Ada Technology Branch. He is leading the real-
time issues and methodologies section and guiding the Ada Experiment, an internal research
effort to investigate the real-time implications of Ada through an experimental real-time sys-
tern. His current project is the Ada Style Checker, a tool being developed under contract to the
Naval Ocean Systems Center. He is also in the group preparing the report on "Software for
Reusable Systems" for the SigAda Future APSE workshop. Dr. Mellby previously held the
responsibility of work group leader for Distributed Computer Systems Support within the
Languages and Tools section of the Advanced Computer Systems Lab. Dr. Mellby was also the
primary software designer on the TEAMS project (Test and Evaluation Aircraft for Multi-
sensor Systems), whose objective was to produce a real-time aircraft-based test bed. Prior to
his employment at Texas Instruments. Dr. Mellby was an Assistant Professor of Mathematics
and Computer Science at St. Cloud State University in Minnesota.

.35.

4353

- . . "

. . . . . . . . .. .



IEUSAILITY EFFORTS

Reusing Minor Routines -Sorting. Stacks, Queues, etc.

Significant Packages

Help Functions

String Manipulations

Word Manipulations

Spilling

436



IELWAILITY PUOLEIS

2 Packages from Ada Repositorl

IOne reused by rewriting data structure -Tulesoft problems
*Other not reusable - Ebedded non-encapsulated OS calls

I Engineers aot writing reusable code

Centric% - New feature not used it all time;
C*I Default Parameters

- Constants
* Attributes

Planning -for reuse not done

I Encapsulation

Engineers not truing to Reuse Saftwart

43 *7

. .* ' . **. * . . . . -



ADA REUALE CHAACTERISTICS

Packaging

Data and Type Encapsulation

I Specifications

Separation of forx/function from implementation
P Information Encapsulation

Declaration of necessarq information through constants
and default values

generics

I. Namd and Default Paraaetss

438



7,-3

NEEDS FOR REUSABILITY COALS

After First Draft, Systems/Packages need to be redone as Reusable

Programmers need to use Ada Features supporting Reuse

Use Standard (validated) compilers

Collect Local Library of Reusable Components

Plan for Reusabilitj during Requirem~ents and Desigi

.439



ADA REPOSITORY

HISTORY

A Public Domain Source of Ada Prograes/Components

Created November, 1984

Located at SINTEL-20 on MILNET

* fMaintained by Rick Conn (TI)

1214) 952-2139

ADA-SREGUESTSIMTEL20

440



ADA REPOSITORY

CONTENTS

General Directory Structure in place
24 Tools and Components

" 2000 Accmes

Submissions
NOSC/WIS Tools

Naval Weapons Center

Access byj Anonymous FTP on ARPA/MILNET

Shortly to be an open account on ECLB for non-ARPANET people
to access the Repositorv

On ECLI - In ADA-INFORMATION, a file describes Repositorl access:

ADA. EPOSITCRY. HELP

441

... nlm. ....... . . m . - -



'". -" - - '"-r - % r -- *- .......- -- .... - . -.-. , J --

MICRO ISSUES IN REUSE FROM A REAL PROJECT

Goeffrey 0. Mendal P
Ada?80 Technology Support Lab

Lockheed Missiles and Space Company. Inc.
Sunnyvale. CA

Abstract

The reuse of generic program units will significantly decrease the time and cost of developing software in
Ada due to savings in designing, coding, and maintaining Ada software. This paper describes the design and
development of a generic sorting package currently in use at Lockheed Missiles and Space Company (LMSC)
in Sunnyvale, CA. This paper will lbcus on the user's view of the package, e.g., the package specification.

It will be shown that reuse can be accomplished in practice, during and even prior to code development, t
in Ada. This package demonstrates the feasibility of reducing the time and cost of building software through
reuse and achieving acceptance in large aerospace projects.

The generic sorting package currently includes six well known sorting algorithms: Quicksort, Heapsort,
Bubble Sort, Bubble Sort with Quick Exit, Insertion Sort, and Straight Selection Sort. Any data type can be

.* sorted, including provisions for limited types. The generic sorting package operates on arrays and requires only
the name of the array to be sorted. However, users may also sort array slices and can optionally request that

I instrumentation analysis results be returned along with the sorted array (or slice) to communicate performance.
High standards of readability and understandability have been imposed so that this package can be used in a
turn-key environment. In fact, the generic sorting package can be easily implemented as an elementary expert
system and can easily be integrated with a merging package to sort data residing on external memory devices.

Reusable software needs interface modules of many different kinds. It is important to identij these
interfaces early in the design phase. In fact, one can further generalize the domain of objects that can be

. sorted by writing a sort selector package which will automatically choose an optimal sorting package based on
the type of the object. The sort selector could take the form of an expert system, which itself would be con-
sidered reusable.

For more complex applications, the user may speci/j the ordering relation on which to sort. Thus, the
user is not limited to ascending or descending orders as in conventional sort procedures. That is. with this Ada
sorting package, user-defined ordering relations are supported. A fanciful example of a user-defined ordering
relation may be to sort an array of CHARACTERs based on a historical account of the temperature in New
York City during the past three months. The inclusion of arbitrary ordering relations can ensure the stabilitv
of sorting algorithms (they are unstable) if they do not preserve the relative ordering of array components with
equal sorting keys). It is noteworthy that the challenge of reuse led in this case to a result that is more general
than the norm.

This generic sorting package has been proposed fbr use in a major L.M1SC project. It has been recog-
ni:ed by the upper-level project managers and by the customer that the use of generic program units such as
this one will significantly decrease the time and cost of building the remaining system software. Currently, this
package is being used as an example of design-for-reuse in an Ada Design Methodology course developed at
LMSC. It is this project's policy that programmers must demonstrate why they are not taking advantage oj this
package before being allowed to write their own sorting routines.

'' "Ada is a registered trademark of the U.S. Government Ada Joint Program Office)

443 r



-w-,'l",-.,-~~.. .'-..wL-o T... .... .. . ... .- . ... .- - . .

NRL Code 2490-0035
LMSC/Mendal

1.0 OVERVIEW "But you can't look up all those license numbers in -:°
time," Drake objected. "We don't have to, Paul. We " '.

Sorting is an abstraction, or more precisely, a functional merely arrange a list and look for duplications."
abstraction. One sorts data by selecting an appropriate
algorithm designed to exploit the most important attri- Perry Mason (The Case of the Angry Mourner, 1951)
butes of the data. A sorting package that aids the user in
selecting an appropriate algorithm can be viewed as an "Treesort" Computer-With this new 'computer-
elementary expert system. approach' to nature study you can quickly identify over

260 different trees of U.S., Alaska, and Canada, even
How general should a sorting package be? Should it sort palms, desert trees, and other exotics. To sort, you sim-many different types of objects, or only one domain of ply insert the needle.

objects? Our experience in reusability at LMSC has
taught us to restrict the domain of the application thus Catalog of Edmund Scientific Company (1964)
making the overall problem at hand less complicated.

Sorting is a frequently used operation in large software The sorting problem can be described as follows:

systems. Hence, it is important to make a reusable sort- You are given 14 records: RI, R2 .... RN. The entire
ing package highly readable and understandable. Pro- collection will be called a file. Each record has a key
grammers should not be burdened with the details of which governs the sorting process, and optional addi-
various algorithms. Instead, they should be able to tional information (satellite information) that is not
make use of the package in a turn-key enironmfl~ent, used, but is associated with each record. Thefile is held

*2.0 AN INTRODUCTION TO SORTING in a computer's high speed memory (RAM) or stored on

an external memory device.
What is sorting, and why sort? Sorting is a process of

" arranging objects from one or more data sets to form a An ordering relation (also known as a collating sequence)
* data set ordered on one or more attributes of the data. "<"isspecifiedonthekeyssothat foranyofthesevaues

Sorting can increase the speed and reduce the complex- a, b. c. the following conditions are satisfied:
* ity of algorithms that use data. Specifically, sorting aids

in searching. Imagine trying to locate the telephone (i) exactly one of the possibilities a < b, a = b, b< a is
number of an individual in a telephone directory that is true
not sorted by last name. A telephone directory that is (ii) if a<b and b<c, then a<c

. sorted by last name allows one to easily search for an These two properties characterize the mathematical con-
individual's telephone number. However, the same
directory cannot easily be used to search for all individ- cept of a total ordering. Any relation"<" satisfying (i)
uals who live on ,Main street and have telephone num- and (ii) can be sorted by any well known sorting
bers that begin with 764 for area code 313. algorithm.

Although many ingenious sorting algorithms have been The goal of sorting is to determine a permutation p(l)
designed, there are still some fascinating unsolved prob- p(2) ... p(N) of records which puts keys in a non- -
lems. Sorting can also be used as a case study on how to decreasing order Kp(I) < = Kp(2)< .... < = Kp(N).
attack computer problems in general. Important princi-
pies of data structure manipulation surface in sorting Sorting is stable if we make the further requirement that
algorithms. Sorting techniques also portray ideas in the records with equal keys retain their original relative
analysis and design of algorithms. [61. order, i.e.:

Persons who are already familiar with sorting algo- p(i) < (j) whenever Kp(i) = Kp(j) and i < j
rithms may wish to skip this section and continue at Sec-
Jon 3.0. The remainder of this section was taken from Sorting can be classified into two different problems:
Knuth [4] and Sedgewick [6). internal and external sorting. Internal sorting assumes

that the records are kept in RAM. External sorting
2.1 A Formal Definition of Sorting. The following quo- assumes that there are more records than can be held in
rations were found in Knuth [4): RAM simultaneously. Thus, internal sorting allows

444

.. .:..:.................................................. ....... .. ..............



NRL Code 2490-0035
LMSC/Menda

" quick, random access while external sorting requires - Special-Purpose Sort: one that works well for
slower access that could also be restricted to sequential sorting five elements as above, but cannot readily
order. be generalized for a smaller/larger number of

items. S...

'nternal sorting allows more flexibility, structure, and
*. access of data. External sorting requires one to cope New, Super Sorting Technique: one tha provides

with rather stringent accessing constraints. For exam- a significant improvement over known methods.
pie, if you are given ten playing cards and are asked to
son them, you could do so using only your hands. You As you can see, many sorting algorithms exist. Each
are able to sort these ten cards without an exrnal sto method has its own advantages and disadvantages, so

" such as a desktop. If, however, you are asked to sort that it may outperform the others given some configura-
1000 cards, then you will require the use of a desktop. tion of data and hardware. There is no known best way .

You are no longer able to sort without an external store. to sort, but there are many best algorithms, depending
As we shall see, the algorithms used to sort with and on what is sorted on what machine for what purpose.
without an external store necessarily differ. 2.3 External Sorting. External sorting must be per-

formed when there are more records than the computer
The time required to sort using a good general-purpose can hold in RAM simultaneously. The solutions are
algorithm is roughly proportional to NlogN, i.e., we quite different from internal sorting, even though the
make about logN passes over the data. Thus, twice as problem is the same. L"
many records will increase the sorting time roughly by a
factor of two, all else being equal. The data structures must be arranged so that slow

peripheral memory devices can quickly cope with the
2.2 Internal Sorting. Suppose you are trying to solve requirements of the sorting algorithms. As a conse-
the following problem. quence, most internal sorting algorithms, by them-

selves, are useless for external sorting, and it is neces-
Memory locations M. M + I. .... M + 4 contain five sary to reconsider the whole question.
numbers. You must write a program that rearranges

- the numbers, if necessary, so that they are placed in One very common solution is to divide the file into sepa-
" ascending order. Imagine that this is your first time rate subfiles that each fit in RAM. Next, separately sort
. sorting anything and you have no prior knowledge of each subfile with an internal sorting algorithm. Finally,

how to proceed. (You might try writing this program use an external merging algorithm on all subfiles. Merg-
before reading on.) Some of the possible solutions ing algorithms only require very simple data structures
you might have used are as follows: (linear lists) accessed in a sequential manner; hence H

merging operations can be performed without difficulty

. - Insertion Sort: items are considered one at a time. on the least expensive memory devices.
Each new item is inserted into the appropriate
position relative to the previously sorted items. Internal sorting followed by external merging is very

common. To simply merge the records into longer and t.
Tni iord py s hamds longer lists from the start will result in redundant read/

write operations on external memory devices, and will

- Exchange Sort: if two items are out of order, they generally be very inefficient.
are interchanged. This process continues until no 2.4 Sorting Factors. The most important factor in sort-
more exchanges are required. ing any file is its size. If the file contains less than 500

records, then it will probably be more efficient to write
- Se!ection Sort: the smallest/largest item is found and use a simple sorting algorithm. If the file-contains

and separated from the rest, then the next less than 50 records, a simple algorithm is always fine.
smallest/largest, and so on. Sophisticated algorithms are not justified for small files

unless they must be used many times.
- Enumeration Sort: each item is compared with r

each of the others; counting the number of smaller Files that are already sorted (or partially sorted) or files
keys determines the item's final position. that contain many equal keys are easy to sort. In fact,

445

. .. -' -. " " -' -" i " " " ". . . : . . . . "".. .." . . . . .." " . . "- "
,-. .'.'." .'.., . . .. ... . ..•



*1i

NRL Code 2490-0035
LMSC/Mendal

such files are often sorted faster using a simple algo- Straight Selection Sort repeatedly selects the smallest/ .*,

rithm rather than a sophisticated one. largest record from those not yet sorted. The running
time of this algorithm is O(N2). The number of compar-

A general rule for simple algorithms is that they take N2  isons made is (N2)/2 since the outer loop require N corn-
steps to sort N randomly arranged records. Using big parisons and the inner loop requires N/2 comparisons.

. Oh notation, O(...) represents the number of steps
* required. A general rule for sophisticated algorithms is This algorithm is good for large records and small keys.

that they take O(NlogN) steps. The 0 stands for on the It should only be used for files smaller than 1000
order of. records.

" The second most important factor in sorting is the extra 2.5.2 Insertion Sort. This stable algorithm is based on
memory used by the algorithm. Some algorithms sort in the method used by bridge players to sort bridge hands.
place and use no extra memory except for a small stack The records are considered one at a time, inserting each
or table. Some algorithms that rely on linked lists use N one in its proper place among those already considered
extra words of memory for pointers. Other algorithms (keeping theM sorted). The record considered is inserted
require enough extra memory to hold a copy of the file merely by moving larger records one position to the
being sorted. right, and then inserting the record considered into the

vacant position.

- Most simple sorting algorithms are stable and most
sophisticated algorithms are not. It is easy to take stabil- The running time of this algorithm is O(N 2). The inner
ity for granted, but the unpleasant effects of instability loop is executed (N2)/2 times. The running time
can cause disbelief. For example, if a teacher has an depends on the number of inversions: for each record,
alphabetized class list, but wants to sort it based on the count the number of records to its left which are greater.

- grades of the last exam, it is only natural to assume that This is the distance that the records have to be moved
students with equal grades on that exam will remain in when inserting into the sorted file.
alphabetical order as before. 2.5.3 Bubble Sort. This stable algorithm makes passes _

Sorting algorithms generally access records in one of through the file, exchanging adjacent records, if neces-
ways: sary. A simple modification of this algorithm can be

twowas made so that when no exchanges are required, the algo-
Keys are accessed for comparison. rithm promptly terminates. However, this improvement

- e eaedo o aocan make the algorithm instable.

- Entire records are accessed to be moved. This is generally the worst sorting algorithm for random
data. Its running time is O(N2), However, it is the sim-

An indirect sorting algorithm does not necessarily re- plest algorithm to comprehend and hence it is often the %
arrange records; rather pointers to the records are re- first one learned by computer science students.
arranged. Indirect sorting is usually more efficient than .•.c

direct sorting (at the expense of memory overhead) When the data are non-random, such as in the case of
because it is usually quicker to move pointers than large adding records to a sorted file, Bubble Sort with Quick
records. Exit and Insertion Sort are O(N) (linear).

2.5 An Overview of Common Internal Sorting Algo- 2.5.4 Quicksort. This ingenious algorithm was invented
rithms. This section briefly describes some of the more in 1960 by C.A.R. Hoare. It has been the center of
common internal sorting algorithms used today. much algorithm analysis and design. Since its inception,

many cousins have been devised to handle various worst
2.5.1 Straight Selection Sort. This instable algorithm cases.

" first finds the smallest/largest record in the file and
Sexchanges it with the record in the first position. Next. Quicksort is a good general-purpose sorting algorithm.

the second smallest/largest record is found and It consumes less resources than any other sorting algo-
exchanged with the record in the second position. This rithm in many situations. Its good points include the
process continues until the entire file is sorted. fact that it is an in-place sorting algorithm (it uses only

446
..?',

.. .. . . . . . . . . . . . . . . . . . . . . .



. -. , _A -.op - % ~

NRL Code 2490-0035
LMSC/Mendal

a small auxiliary stack), its running time is O(NlogN), Hence, even though this algorithm is O(NlogN) and is
and has an extremely short inner loop. Its drawbacks non-recursive, its performance is still not as good as
are that it is highly recursive, its worst case running time Quicksort. Z
is O(N 2), it is instable, and it is fragile, that is, a simple
mistake in its implementation might go unnoticed and 2.6 Summary and History. Sorting is a process which
could cause bad performance for some iles, rearranges a file of records so that the keys are in order.

Orderly arrangement is useful because it brings equal
Because the algorithm is so well balanced, effects of keys together, allows for efficient processing of multiple
improvements in one part of the algorithm can be more files sorted on the same key, leads to efficient retrieval
than offset by effects of bad performance in other parts, algorithms, and makes computer output look more
Once a version has been developed, carefully tuned, and authentic.
seems free of unexpected effects, it is likely to be the
algorithm of choice for a library sorting utility or seri- It would be nice if only a few sorting algorithms would
ous sorting application. It is important to invest exten- dominate all of the others, but each has its own peculiar
sive effort to make certain that Quicksort is not flawed. virtues. All algorithms deserve recognition because

there are applcations where each one turns out to beThe algorithm is based on the divide and conquer tech- best. For external sorting, one must use comparatively
nique. Its one disturbing feature is that it runs very inef- primitive data structures, and great emphasis must be
ficiently given non-random data. For already sorted placed on minimizing input/output time.
files, the paritions will be degenerate, the time required
will be (N2)/2. and the space for recursion will be N Sorting isn't the whole story. While studying sorting
(which is unacceptable). For files with equal sorting algorithms, one is necessarily exposed to handling data
keys, it may be difficult to decide whether to have the structures, dealing with external memories, analyzing
pointers stop on a key equal to the partition record, or algorithms, and discovering new algorithms.
to have one pointer stop and the other scan over all
equal keys, or to have both pointers scan. The origin for today's techniques is the 19th century,

The best thing to do is to partition the file in half. This where the first sorting machine was invented. The U.S.
census by 1880 was causing problems due the volume of

make the number of comparisons satisfy tequa- data that required analysis. Herman Hollerith, a twenty
tion C(N) = 2C(N/2) + N so that C(N) is approximately y l o f C s a e
equalyear old employee of the Census Bureau devised an

ingenious electrical tabulation machine to meet the needalgorithm is O(NlogN). for better statistics gathering. This machine was first

Recursion can be removed by using an explicit stack to used in 1890. Hollerith's isolating box could sort 19071
save the variables instead of having the programming cards in a six and one half hour working day. This was
environment do it implicitly through recursion. The three times faster than human speed. Hollerith designed
stack size should be logN. A recursive method can abort new machines for the 1900 census to handle the combina-
due to no more memory (degenerate case on large files). torial population explosion. Hollerith's machine is the
There is no way to avoid this problem completely for basis for radix sorting now used on digital computers.
large files without removing recursion. The simple use
of an explicit stack will improve performance. There is evidence that a sorting routine was the first pro-

gram ever written for a stored program computer.
2.5.5 Heapsort. With this instable algorithm, the file is Designers of the EDVAC were interested in sorting
considered as a binary tree and the "heap" is an almost because it epitomized the potential and non-numeric
complete binary tree of N elements such that the content applications for computers. The limited memory of
of each element is less than or equal to the content of its early computers made it necessary and natural to think
parent. The running time is O(NlogN). The algorithm is about external sorting as well as internal sorting.
not recursive, and only requires extra space for tempo-
rary variables. During the sort, the file is used as a The history of sorting has been closely associated with

" workspace. many firsts in computing: data processing machines.
stored programs, software, buffering methods, and

This algorithm usually makes four times as many work on analysis of algorithms and computational r
exchanges and twice as many comparisons as Quicksort. complexity.

447
• V '

..............................................



NRL Code 249-0035
LMSC/Mendal

,... A3.0 REQUIREMENTS FOR A GENERIC default order will be used if none is speied during

SORTING PACKAGE instantiation. The flexibility of the ordering relation will
become the most important requirement as we shall see

- Sort a one-dimensional array using the most effi- below. In particular, it is this requirement that permits
cient algorithm known (determined by an expert us to ensure the stability of every sorting algorithm.
system).

The availability of choices among sorting algorithms is
- Process arrays of arbitrary length, including null array intended to cater to a wide class of problems. Some

In particular, allow army sices to be easily sorted. algorithms may execute faster if certain conditions can
be satisfied, e.g., if the array is already partially sorted

- Design the package so that it can be easily inte- or many of they keys are equal.
grated with a merging package in order to provide
external sorting capabilities. As mentioned above, the components of the array can

be of practically any type. The generic sorting package
- Sort in any order, ascending, descending, or arbi- will sort arrays of characters, numeric types, enumera-

trary. In particular, provide a mechanism to tion literals, arrays, records, and access types (that des-
ensure the stability of any sorting algorithm. ignate other objects). This flexibility demonstrates the

ability of the Ada generic feature to separate the algo-
- Sort any array component type, including provi- rithm from the data.

sions for limited types.
Optional instrumentation analysis results can be

- Provide a selection of well known internal sorting obtained to determine how many steps a sorting algo-
algorithms. rithm performed on a given array. These results can be

used to compare the relative efficiency of various sort-
- Provide an option for retrieval of instrumentation ing algorithms.

analysis results for each sorting algorithm. "

Any programmer should be able to use the package
- Allow the array index to be of any discrete type. without prior experience in the area of sorting. The user

In particular, do not require that the-lower bound interface must be clean and simple, while also providing
be zero or one. the flexibility demanded by complex applications.

- Provide sensible (most frequently used) defaults 4.0 DESIGNING THE GENERIC
for the sorting algorithm and a predefined SORTING PACKAGE
(default) ordering relation. SPECIFICATION

- Adhere to the highest defined level of standards
for readability and understandability in the pack- In order to isolate the algorithm from its data types, we

will make use of Ada's generic program units which allowage specification and body to facilitate reuse.
us to pass data types and subprograms as parameters.

Discussion of the Requirements. The requirements for
this generic sorting package apply primarily to one- The generic program unit should be a package since we

dimensional arrays. However, there are no limitations will need to export algorithm and instrumentation anal-

on such arrays. Thus, the array to be sorted may be of ysis result types. The sorting algorithms should be con-

arbitrary length, indexed by any discrete type, and its tained within a procedure since more than one result can

values may incorporate any array component type be returned: the sorted array and the instrumentation
except limited types. In Section 4.3 it will be described analysis results.

how one can use this package to sort limited types, and
also how to integrate it with a merging package to sort The following portion of the generic program unit speci-
external files. fication is taken from APPENDIX I. This portion is

analyzed below.
This package will sort in any arbitray order. In addition,
ascending and descending orders may be specified. A with SYSTEM: - predefined package SYSTEM

448

...........................



NRL Code 2490-0035
LMSC/Mendal

generic private specifies a component type that can implicitly

type Component.-Type Is private; support assignment, equality, and inequality opera-
type Index.Type Is (< >); tions. Note that nearly all data types in Ada do support
type Array-Type Is array these minimal requirements. This line of code essentially

(Index.-Type range opens the floodgates to arrays of any kind of compo-
< >) of nent except limited types. the problem of sorting limited
Component-.Type; types is non-trivial because not even assignment, equal-

ity, and inequality can be implicity supported. How-
with function <" ever, as shown below, limited types may be sorted if

Left, Right: In ComponenL.Type) they are designated by access types. Examples of limited
return BOOLEAN is < >; types are task types and file types.

package SortPac is
type Sort__Algorithm.Type is (Quicksort, 4.1.2 The Index Type Parameter. We specify the array %
Heapsort, Bubble-Sort, index as follows:
Bulble-SorLwith-Quic-Exit,
Selection-Sort, Insertion-Sort); type IndexZ.Type Is (< >);

type Instrumentation__Analysis-Type is The symbol (< >) represents any discrete type. This is
range -1 .. SYSTEM.MAX..INT; the most flexible type that Ada will allow as an array

index. In Ada. the components need not be indexed by
procedure SORT( positive integers. Instead, Ada allows components to be

Sort.Array : in out indexed by such entities as days of the week, months in
Array-Type; the year, galaxies in our universe, etc.

Number-of- Comparisons,
Number-ofLExchanges 4.1.3 The Array Type Parameter. The specification of

out the array type is as follows:
Instrumentation-..
Analysis-Type; type Array-Type Is array (index-Type range

Sort.Algorithm : in < >) of ComponenL._Type;
Sort.Algorithm-Type C

= Quicksort); Note that this is simply a concatenation of the specifica-
tions in sections 4.1.1 and 4.1.2 above. We really are not

procedure SORT ( adding any new information here. However, due to
SortArray : in out Ada's strong typing requirements, this superfluous

Array-Type; information will be required later. Also note that this
Sort_Algorithm :in type declaration could be moved inside the package

Sort.._Algorithm-Type specification. Doing so, however, would require that all
= Quicksort); array objects be elaborated after the package has been

instantiated. This would hinder information hiding.,.
Also, the user would not easily be allowed to create his
own array type name; s/he would have to use the name

4.1 The Generic Formal Type Parameters. We will need Array- Type.
to know the type of the components being sorted, the ..-.
type of the array index used, and the type of the array What does that array type declaration say? First of all.
itself. In addition, we will need to know the ordering it says that Array.Type is a template for an array. The
relation if the default (ascending) cannot apply, array will have one and only one dimension denoted by

Index-Type. The bounds of the array are left unspeci-
4.1.1 The Component Type Parameter. We specify the fied, as denoted by range < >. Thus, the length of the
component type as follows: array is unspecified until a later time, or in Ada terms, it

is unconstrained. Finally, the type of the array compo-
type ComponenL.Type is private; nents is denoted by ComponenL_.Type.

449

z,.



- L- . -- - . . - . o -7

NRL Code 2490-0035
LMSC/Mendal

4.2 The Generic Formal Subprogram Parameter. In package body associated with the Sort._Pac package
order to conceptualize the ordering of data in a sorting specification will be responsible for implementing this
routine, it is necessary to understand how ordering is default requirement. Note that the > operator is the
implemented in Ada. Then it will be necessary to under- counterpart of the < operator. Thus, > can be speci-
stand how one specifies an ordering relation in a generic fled by the user at instantiation time in order to override
program unit. the default ascending order, and instead implement a

descending order.
People do not reason in the same way as computers.
When people order data, they do not think about it in Ada explicitly provides the < and > operators for dis-
terms of TRUE or FALSE. For example, in the follow- crete types and numeric types. In other words, the
ing relational expression. language has already defined functions named "<"

and ">" that one can use to compare characters.
(3 + 4) < (5 + 6) numeric types, enumeration literals, etc. However. Ada

does not (and conceptually cannot) provide < and >
people do not conclude that the expression contains two operators for composite and access types because it is
possible values, namely TRUE and FALSE. Instead, we impossible to say, for any set of such objects, which are
reason on a higher level by simple knowing that seven is less than or greater than the others. Hence, if an array
less than eleven, and therefore the expression is correct. of composite or access types is to be sorted, the Ada
However, in Ada, the relational operators return results programmer must write his own ordering relation. For-
only in boolean terms. In Ada, relational operators are tunately, as described later, the code for doing so is not
BOOLEAN functions. complicated.

The ordering relation in the generic sorting package is "rC'n"
implemented by specifying a relational operator "<" To reiterate, if ComponentType is not itself a com-posite or access type, then the <'"formal subprogram --
as a generic formal subprogram parameter as follows: pst racs ye hnte'< omlsbrgaparameter can be left unspecified at instantiation time if

an ascending order is desired, or replaced with ">" at
with function B< (Left Right: in Componen. instantiation time if a descending order is desired. Only

Type) return BOO LEAN is <>; if Component-_Type itself represents a composite or

access type must the Ada programmer write his own
This is the most comprehensive line of code in the ordering relation. Of course, an Ada programmer could
generic program unit. It is this line of code that general- write his own ordering relation regardless, but thiscould

-"izes all the tests of inequality in the SorPac package, would be highly unusual if the type possessed implicit
enhancing its reusability. relational operators.

The with keyword in the declaration above is a nota-
tional element required to reduce a potential syntactic Assume that ComponenLType is a record type. Then

ambiguity. Without the with keyword, it would be tre- the Ada programmer will have to provide an ordering

mendously difficult to distinguish a generic formal sub- relation. This relation should compare a key component

program parameter from a generic subprogram. The or components of the records to determine the ordering.
function keyword specifies that this subprogram is, in For example, if we are dealing with elephants, then how

fact, a function. The name of the function is "<". In are we to determine which elephant is less than (or

Ada, all relational operators are BOOLEAN functions, greater than) another elephant? The answer could be

The "<" function takes two values of type that we base our decision on the length of their trunks.
Component-Type as input and returns a BOOLEAN Thus if our elephants are represented as a record type
value (TRUE or FALSE). The remainder of this line of
code, is < >;, denotes that the default function is type Elephant-Type is

. assumed to be a function with the same name, directly record
-. visible at the point of generic instantiation. This func- Trunk-_Length,

lion is usually the predefined < operator. Height,
Weight : POSITIVE;

" Thus, the < o: erator is the Ada implementation Name :STRING (1..40); r
of ordering data. The default is ascending order. The end record;

il. .L~ bilk"
• • -..-.....-.-..-........-............ ",..........•."..........."--,-...-..'-....•........ ... ,'. .



°,. .,. \ -. - = - . . - -'L -. -*. . - q. = . --. - - N. ' ' - - - - .-- . -' " -' -' . -

NRL Code 2490-0035
LMSC/Mendal

then the component Trunk.-Length is the key of the return Taxpayerl.Name < Taxpayer2.Name;
record type that will determine how elephants are to be end Taxpayer-Ordering;
sorted. We could have easily picked any of the other

components, or some combination. To implement a But if we have two or more taxpayers with the same
function that will specify such an ordering, the Ada pro- name, we might want to sort them by a secondary field,
grammer would write a function such as the following: the ID..Number. Such an ordering relation might look

like this:
function Elephant-Ordering (

Elephant1, Elephant2: In Elephant..Type) function Taxpayer-Ordering(
return BOOLEAN is Taxpayer1, Taxpayer2 : In Taxpayer-Type)

begin return BOOLEAN Is
return Elephantl.Trunk_Length < begin
Etephant2.Trunk__Length; return (Taxpayerl.Name < Taxpayer2.Name)

end Elephant-Ordering; or
((Taxpayerl.Name = Taxpayer2.Name)

Thus, the function Elephant-Ordering when provided and
at instantiation time as an actual parameter for the (Taxpayerl.IDNumber <
generic formal subprogram parameter "<", will sort Taxpayer2.1D.Number));
elephants in ascending order based on the length of their end Taxpayer-Ordering;
trunks. That is, the elephant with the shortest trunk will
be first and the elephant with the largest trunk will be The ordering relation above uses a collating sequence (a
last. Note that their trunks are specified as positive succession of records ordered by attributes of the data
numbers thus making the statement within each record) in order to alphabetically order an

array of taxpayers. If two or more taxpayers have the
return Elephantl.Trunk.Length < same name, the collating sequence dictates that they be
Elephant2.Trunk-Length; ordered according to their identification number (ID_fl ~*Number).

work. By replacing the < in the return statement above
with a > or simply by interchanging the two operands, An ordering relation such as the one above will also
the elephants will be sorted in descending order, e.g., assure the stability of unstable sorting algorithms. An
the elephant with the largest trunk will be first and the interesting and noteworthy case of stability may be to
elephant with the smallest trunk will be last. sort alphanumeric data without respect to upper/lower

case. The ordering relation can even take into account
Not all ordering relations need be this simple. For exam- the time of day, the current date, the weather, the value
pie, the order of the elephants could be determined by a of the U.S. Dollar as compared to the Japanese Yen,
combination of record components. In another exam- etc. In other words, it is possible to separate the sorting
pie, if we wish to alphabetically sort an array of taxpay- algorithm from the ordering relation, and allow the pro-
ers represented by the record type grammer to specify his own (possibly very complicated)

ordering relation. Thus, the same package designed
type Taxpayer-Type is originally to sort an array of integers in ascending order

record can now sort an array of Taxpayer-Type records based
Name STRING(I..40); on the weather in Ann Arbor and whether or not the
Age NATURAL; University of Michigan varsity football team won their
ID-Number POSITIVE; last home game. It is the decoupling and generalization

end record; of the ordering relation that make this generic sorting
package reusable.

-we might first try using the ordering relation:
If the number of records to be sorted is large, then it

function TaxpayerOrdering( may be more efficient to use an indirect sorting algo-
Taxpayeri, Taxpayer2 in Taxpayer-Type) rithm (one that sorts access types). In the last example,
return BOOLEAN is if we needed to sort 100 million taxpayer records, it r

begin would probably be more efficient to sort access types

451

. . . . . . . . . . . . . •.. , ..

.. ...... ..... . . . . . . . ............ ,..,.....,... .. ... ,.



- - - - - --.. . . . . .. . . . . . . . . .......-- I

NRL Code 2490-0035
LMSC/Mendal

that designate taxpayer records rather than the apayer using Ada's predefined array attributes. This is the way
records themselves. Of course, the access types do add Ada solves the problem of determining the bounds of
extra memory overhead. The Taxpayer-Type above the array ahead of time. This may make the code con-
needs no changes. We will require the addition of an struction of the SORT procedure slightly more difficult,
access type which designates those taxpayers: but not less efficient. The potential hardship spared the

user far outweighs a small effort in obtaining the array
type Taxpayer..Access..Type Is access bounds. Also, expliciy passing the array length would
Taxpayer-Type; increase coupling. " -

The Taxpayer-Ordering function above needs only one One point that should be made now is that the array .-

minor modification in its parameter list: type definition, Array-Type, described above was
needed so that the formal SORT procedure parameter.

Taxpayer1, Taxpayer2 : in Taxpayer._Access- SorL.Array, could be specified. Ada requires that a
Type) .type mark be specified for all subprogram formal

The remainder stays the same. Thus, it is very easy to parameters ([II section 6.1 paragraph 2).

rewrite an ordering relation that compares data to one 5.0 USING 'HE GENERIC SORTING
that compares access types which designate the data PACKAGE
(and visa versa).

A user instantiates the generic sorting package in order
Since access types can designate limited types, it is possi- to create an instance of it and thus make use of it. This
ble to sort limited types which are designated by access paper does not attempt to explore the area of instatia-
types. For example, if one wants to sort a series of task edons. However, the Ada comments provided in

types (a limited type) based on the time of day at which APPENDIX I should provide an insight into how one

they were activated, one need only construct an array of incorporates the generic sorting package into a normal
pointers to those tasks and write an ordering relation
that compares their activation times (presumably held in application
a global data structure). The instantiation process is not complicated. However, ..

4.3 The Generic Sorting Package Definition. All that i one must be sure that the proper data types and ordering
4.t is Genseiy toetingpu adeoutputstior.Al th ST relation (if any) are provided. An Ada compiler can usu-left is o specify the inputs and outputs for the SORT ally flag most instantiation errors at compilation time. -"

procedure. The array to be sorted is both an input and a mn epe
output parameter. Optionally, the instrumentation analy- Note that this generic sorting package is limited in that it
sis results are output parameters. In our definition of the is only intended to sort one-dimensional array objects.
SORT procedure, the instrumentation analysis results are The design of this sorting package will not directly
simply integers that count the number of comparisons accommodate linked list structures or data that resides
and exchanges made by the sorting algorithm. The in backing store (disks, tapes, cards, etc.). It would be
value - I is returned if the instrumentation analysis coun- much easier to design separate generic sorting packages
ters overflow. This is possible when sorting extremely for different classes of objects such as linked lists and
large arrays with O(N2) sorting algorithms. The over, multi-dimensional arrays than it would be to incorpo-
loading of the SORT procedure makes the instrumenta- rate all sorting routines for all objects in one unit. How-
tion analysis results parameters optional. The default ever, as mentioned above, this unit can be integrated
sorting algorithm is Quicksort, since it is generally going with a merging package to provide external sorting
to perform better than any of the others. If the user capabilities.
wants to override this default, s/he must specify another cpite
input parameter that names the sorting algorithm to use. 6.0 MEASURING THE PERFORMANCE
Alternatively, the user can override this default by using a OF THE GENERIC SORTING L
renaming declaration which specifies a different default PACKAGE
algorithm (Il] section 8.5 paragraph 8).

This generic sorting package has been implemented at
We do not need to have the user explicity pass the length LMSC in Sunnyvale, CA. Its performance has been
of the array. All array attributes can be determined at measured by writing some benchmark drivers. The
runtime inside the body of the SORT procedure by benchmarks have been run on the ROLM MSE-800 and r

452

. -S



NRL Code 2490-0035 L
LMSC/Menda

DEC VAX 11/780 machines using the ROLM and DEC ROLM MSE-800 and DEC VAX 11/780 machines
compliers, respectively. The condensed results of these required different methods of accessing and computing
benchmarks can be found in Appendices II and I1. An the CPU time used by an algorithm, direct comparisons
analysis of the benchmarks for each machine appears in must again be scrutinized very carefully. In fact, the
the sections below. ROLM returned millisecond CPU timing, but the DEC

VAX returned only centisecond CPU timing.
These benchmarks only test performance of the algo-
rithms for random data. No benchmarks have yet been The benchmark drivers made use of package CALEN-
written to test algorithm performance for partially DAR in order to produce overall elapsed timing. -
ordered data or completely ordered data.

6.1 Analysis of the ROLM MSE-800 Benchmarks. For
Three different tests for random data have been arrays of size 25 or less, the simple algorithms were
performed: quite adequate. In fact, Insertion Sort and Selection -

Sort consistently performed equal to or better than
- Sort arrays of fixed point types. Quicksort and Heapsort. However, as soon as the array

- Sort arrays of records with three fields: CHARAC- was of size 50or more, Quicksort and Heapsort began
TER, INTEGER, and FLOAT. The primary key is to outperform all simple algorithms.

CHARACTER, the secondary key is INTEGER,
and the third key is FLOAT. This ensures that for Across the board, Bubble Sort was the worst algorithm

orderings will be based on the to use on random data. Bubble Sort with Quick Exitlarge arrays, mey deigas ill o n the performed better than Bubble Sort, but not as good assecondary key and occasionally on the third key. Insertion Sort or Selection Sort. Insertion Sort per-

- Sort arrays of access types that designate records, formed a little better than Selection Sort for arrays of
The records are identical in structure and compo- size 250 or greater.
sition to the second test (above). This will portray
the difference in sorting records and access types Quicksort consistently outperformed Heapsort for all3 which designate records. arrays of size 25 or greater.

A pseudo random number generator was used to gener- There appeared to be no significant difference in sorting
ate the random data. The first key was always given as in ascending or descending order for any algorithm.
the integer 1357 to ensure identical data across more Occasionally, there was a significant difference in the
than one test (of the same type). The pseudo random number of comparisons or exchanges, but this was to be
number generator returned fixed point types. Hence, a expected.
direct comparison between the ROLM MSE-800 and
DEC VAX 11/780 must be made carefully since the Sorting a simple type such as a fixed point number
model numbers between the two machines were proba- required much less CPU time than sorting a record
bly different. This would have resulted in the generation where many collisions in the primary keys were
of different random numbers and thus different arrays expected. Also, sorting access types rather than the
across the two machines. records themselves required less CPU time for Heap-

sort, Bubble Sort, Bubble Sort with Quick Exit, and
The benchmark drivers were designed so that the O(N 2) Insertion Sort. Curiously, Quicksort and Selection Sort
algorithms would only be benched when the array size consistently required more CPU time to sort access
was less than or equal to 1000. Also, for each algorithm types versus the time required by each to sort whole
being tested, both ascending and descending ordering records. One possible reason for this may be that since
relations were benched. both Quicksort and Selection Sort are so efficient in the

number of interchanges of array components, the time
In order to produce CPU timing data, the Sort.._Pac required to dereference the access types for oomparison
package body was slightly modified. Initially, a start operations became the most important factor and hence
CPU timer routine call was made. Then the appropriate slowed down the speed of the entire sorting operation.
algorithm was performed. Finally a call to the same
CPU timer routine was made, and the difference in 6.2 Analysis of the DEC VAX I1/780 Benchriarks. For
times was calculated in the benchmark driver. Since the arrays of size 25 or less, the simple algorithms were

453

. . . . . . . . .. . . . . . . . . . . . . . . . . .



. . . . . . .. .. . . . . . - . . . .

NRL Code 2490-0035
LMSC/Mendal

quite adequate. In fact. Insertion Sort and Selection 7.1.1 pragma INLINE, Some utility subprograms are
Sort consistently performed equal to or better than hidden in the package body. These subprograms are ". .
Quicksort and Heapsort. However, as soon as the array called repeatedly to perform mundane tasks such as
was of size 50 or more, Quicksort and Heapsort began bumping counters and exchanging array components.
to outperform all simple algorithms. These subprograms can be specified by pragma

INLINE, in which case the compiler will inline the code.
Across the board, Bubble Sort was the worst algorithm This will eliminate the repetitive and possibly expensive
to use on random data. Bubble Sort with Quick Exit nature of unneeded subprogram calls.
performed better than Bubble Sort, but not as good as
Insertion Sort or Selection Sort. The Insertion Sort per- 7.1.2 pragma SUPPRESS. Ada demands that an imple-
formed equal to Selection Sort for all arrays. mentation provide range and constraint checking at run-

time. After thoroughly testing a package, efficiency can
Quicksort consistently outperformed Heapsort for all be gained by instructing the compiler to eliminate such
arrays of size 25 or greater. checks by using pragma SUPPRESS.

There appeared to be no significant difference in sorting 7.1.3 pragma OPTIMIZE. The speed of the sorting
in ascending or descending order for any algorithm, algorithms can be increased by using this pragma.
Occasionally, there was a significant difference in the OPTIMIZE can also be set so that the size of the code is

*number of comparisons or exchanges, but this was to be decreased, but since the algorithms are not very compli-
* expected. cated (most are fifty lines or less), it is better to use this

pragma to optimize the speed of the code.
Sorting a simple type such as a fixed point number

* required much less CPU time than sorting a record 7.1.4 Making Quicksort Non-Recursive. Quicksort is
where many collisions in the primary keys were the default algorithm for the package. Currently, it is
expected. Also, sorting access types rather than the highly recursive. Its implementation can be changed to

. records themselves required less CPU time for all algo- make it non-recursive and thus more efficient.
rithms except Selection Sort when the array size was of
size 10000 or less. Curiously. Quicksort and Heapsort 7.2 Integrating a Merging Package to Sort External (
consistently required more CPU time to sort access Files. Merging is a process of arranging records from
types versus the time required by each to-sort whole two or more previously sorted data sets to form a data
records for arrays of size 25000 or more. It might be set ordered on the same attributes as the source data. To
that the large memory requirements to store such arrays sort external files, one can write a merging package
lowered execution time in fetching those address spaces. which when integrated with the generic sorting package
Also, Selection Sort always performed better on whole above, would provide external sorting capabilities. One
records than on access types. One possible reason for can view the merging operation as an exended opera-
this may be that since Selection Sort is so efficient in the tion of the sorting package; it augments the previous
number of interchanges of array components, the time capability of the sorting package thus enhancing the

- required to dereference the access types for comparison reusability of both packages.
operations became the most important factor and hence
slowed down the speed of the entire sorting operation. 7.3 Internal Sorting for Other Data Structures. The

design of this generic sorting package can be used to
7.0 FUTURE DIRECTIONS write other sorting packages that will sort different

classes of data structures. Linked lists and multi-
Several enhancements to the generic sorting package can dimensional arrays are very common in large systems.
be made, all of which are completely upward compati- The ideas incorporated in this package can be used to
ble. These enhancements will improve the efficiency and provide direct sorting capabilities for those data struc-
flexibility of the sorting algorithms and allow one to tures. Also, special-purpose sorting algorithms such as
sort other data types in Ada. Meansort, radix sorting, and Shell Sort can be derived

from the design of this generic sorting package.
7.1 Improving Performance. Some simple additions to
the generic sorting package can improve the overall effi- 7.4 Developing an Expert System to Select an Optimal
c ciency of the sorting routines. They are described below. Algorithm. Cu, rently, a user of the generic sorting

454



NRL Code 2490-0035
LMSC/Mendal

package must either blindly accept the default algo- These are easier to make reusable, because in a sense,
rithm, Quicksort, or know enough about the provided the algorithms are already being reused.
selection of algorithms to pick the best one for his or her
application. A fairly simple expert system could be writ- The use of generic program units such as this one have
ten that asks the user questions such as been proposed for use in a major LMSC project.

Upper-level project managers and the customer have ," -

- How much data needs to be sorted? realized that the use of such generic program units will .- _.
significantly decrease the time and cost of developing

- Is the data already partially in order? software for large systems. r

- In what order would you like the data sorted Reusable libraries and environments that contain

(ascending, descending, etc.)? generic program units are indeed becoming popular. It
may not be long before software can be built largely by

- What type of data is being sorted (large records, integrating various pieces of reusable software from a

positive numbers, etc.)? reusable library or environment.

Since generic program units such as the one described
so that the best algorithm could be automatically here can be designed to handle virtually any data type, -C.
elected. An improved version of this expert system heecnbdsiedthalevrulynyaatp,
ctld An h impovedtil vfern oftthisaetpentsystem users will rarely have to write their own routines, thus

could hide the details of generic instantiations, data avoiding duplication of effort. The cost reductions in
locations, etc., so that users without technical back- developing, testing, documenting, and maintaining
grounds or Ada experience could make use of the these applications will significantly decrease. In fact,
generic sorting package. such generic program units can be integrated and lay-

Alternatively, this expert system could be integrated ered as described in Sections 7.3 and 7.4 above so that
into the generic sorting package. By analyzing the users with different backgrounds can make use of the
Sort...,Array attributes and optional user-specified data same code, each at their own level of Ada competence.

type parameters, it could automatically choose an opti- 9.0 CONCLUSIONS
mal algorithm. Thus, the expert system could itself be

considered a minimal applications selector, It has been shown how a generic program unit can pro-
vide reusability. Generic program units allow one to

S7.5 Integrating a Generic Searching Package. It is only construct a wall between algorithms and data types.
natural that after the data has been sorted, it will be Furthermore, generic formal subprogram parameters
accessed by some application. As stated above, sorting can deliver generalizations of operations in algorithms. -

aids in searching. One could easily write a generic The conceptualization of the ordering relation in the
searching package that makes use of the fact that the Sort__Pac package can be applied to similar ordering
data has been sorted by the generic sorting package. relations in searching routines, schedulers, and lexical

scanners. In fact, such tests of inequality are among the
8.0 THE COST IMPACT OF most frequently used operations.

DEVELOPING GENERIC
APPLICATIONS IN Ada The potential savings in constructing such generic pro-

gram units is enormous. Consider the fact that most sys-
Generic program units, like the SortPac package tem sorting routines can only sort data in external files
descrbed above, can significantly decrease the cost of or simple data held in arrays. We are aware of no system
building software for various applications. The Sort- sorting routines that can sort arbitrary arrays of

- Pac package described above was researched, designed, records. However, as we have seen, it is possible to
implemented, tested, and documented in less than six design and use a generic sorting package that sorts sim-
months by one LMSC programmer. ple data types, and advanced data types as vell.

The cost of implementing reusable software may be a In constructing a reusable software component, it is
function of how well the algorithms are known. Sorting important to assume as little about the data as possible.
algorithms, like math routines and certain stack and If little or no assumptions about the data are specified, r
queue primitives, fall into the category (if well known, then a wider class of data can be accommodated. In the

midad.miW ""-



NRL Code 2490-0035
LMSC/Menda

Sort-Pac package described above, we purposely ciate the density of generic code, it is worthwhile to
assumed only assignment, equality, and inequality invest the time needed to scrutinize every line of generic
about the data. There is nothing different about sorting code. A generic program unit should not be overly
integers and characters. Additionally, there is nothing general. It is far better to provide many generic units for
different about sorting in ascending order, descending many different data structures than to provide only one
order, or a user-specified order. which, due to its extreme generality, will provide less

reusability.
Generic program units will typically be small, as far as
lines of code are concerned. However, each generic pro- Generic program units must also be highly readable and
gram unit can potentially save hundreds of lines of code understandable. Reusability is dependent on the fact
later in program development while simplifying the con- that others will be able to comprehend the requirements
struction of future algorithms. While it is easy to appre- of the generic program unit to use it effectively.

45b

MOM.-

. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . ..
. . . . . . . . . . . . . . .. . . . . .. .. . . . . . . . . . . . . . . . .



NRL Code 2490-0035
LMSC/,Mendal

REFERENCES

1. ANSUML,, TD-. 15A, Ada Prog'ramming Language, AJPO, US.A. (22 January 1983).

* 2. Arkwright, T., Conversation regarding future directions of development. LIMSC, Sunnyvale, (17 December 1984).

3. Kidwell. D., Conversation identifying specific micro issues in reusability, LMSC. Sunnyvale, (11 January 1985). .

4. Knuth. D., The Art of Computer Programming, Volume 3: "Sorting and Searching," Addison-Wesley, Reading.,

MA, (1973), pp. 1-388.

* 5. Motzkin. D., Communications of theA.CM, 'Meansort," Volume 26. Number 4, (April 1983), pp. 2.50-251.

6. Sedgewick, R., Algorithms, Addison-Wesley, Reading, MA, (1983), pp. 91-167.

7. Tenebaum. A. and Augenstein, M., Data Structures Using Pascal, Prentice-Hall, Inc., Englewood Cliffs, NJ,

(1981), pp. 367-423.

45-7



NRL Code 2490-0035
LMSC/Mendal

APPENDIX I
The Generic Sorting Package Specification

t

-p.-

PROJECT: Generic sorting package

- Author. Geoff Mendal, LMSC
- Date Written: Thu 02 Aug 84 7
- Last Revision: Tue 08 Jan 85
- Version: 3.1 (TUAN085)
- Source file: :UDD:GEOFF.DSS:GENERIC-SORT:SORTPAC.ADA
- Dependences: package SYSTEM
- Implementation: ROLM Ada
- Target machine: MSE-800
- History of changes:
- FRUG244: added Quicksort, normal Bubble Sort, Straight Selection Sort, and number of

exchanges and comparisons made for each algorithm.
- TUUG284: "Key-Type" now named "ElemenL.Type", better comments, more examples
- TUCT094: added many new features, cleaned up code, etc.
- SACT204: added Heapsort and Insertion Sort
- THOV014: now a generic-package with overloaded procedures
- TUAN085: changes to conform to the micro reuse issues paper

- Sort__Pac is a generic sorting package. The procedure SORT will sort a one dimensional array of
- any component type that supports assignment, equality, and inequality (private types) indexed by
- discrete type components. The default sort strategy is ascending order but may be overridden by
- the user. The default sort algorithm, Quicksort, may also be overridden.

- Note that the component type can be a record type. SORT is not restricted to simple data types. If
records are to be sorted, then the formal generic subprogram parameter "<" must be specified

- with a selector function, e.g., a function provided as an actual generic subprogram parameter at
- instantiation (see example #2 below).

- Also note that the component type can be an access type (which can point to other objects,
- improving sort efficiency). If access types are to be sorted, then the formal generic subprogram
- parameter "<" must be specified with a selector function (see example #3 below). Since access
- types can be sorted, the SORT routine below can be used to sort limited types (designated oy
- access types).

- The number of comparisons and exchanges made to sort the array can be returned. These
- numbers should give some indication on how much work was actually performed by the sorting
- algorithms. These numbers can also be used to compare the relative efficiency of
- the sorting algorithms.

458

. . . . . . . . . . . . . . . . . . . -.



NRL Code 2490-0035
LMSC/Menda"

- This package can be used to sort data on external devices. The user should use this package to
- sort a subset of the external data, then use a merge operation on all sorted subsets. For example,
- if the system can only hold 1000 components in RAM, but you need to sort 3000 components, bring

- - in components #1-1000 and sort them using this routine, and then write them to a file. Next do the
* - same with components #1001-2000, and finally with components #2001-3000. Now merge the three

- sorted files using a merging package.

with SYSTEM; - predefined package SYSTEM

generic
type Component-_Type Is private; - type of the data components
type index-Type is (< >); - type of array index

- the following generic formal type is required due to Ada's strong typing requirements. The SORT
- procedure cannot handle anonymous array types. This type will match any unconstrained array
- type definition (so that array slices can be sorted too-see example #3 below).

type Array-Type is array (index-_Type range < >) of Component-Type;

- the following formal subprogram parameter defaults to the predefined "<" operator which will
- sort one-dimensional arrays of Component -Type in ascending order (by default). If composite or
- access types are to be sorted, a selector function must be specified.

* with function "<" (Left,Right in Component..Type) return BOOLEAN Is < >;
package SorL.Pac is
- users can specify the type of sorting algorithms they want by specifying an enumeration literal
- from the type below. The default algorithm, Quicksort, generally provides the lowest number of
- comparisons and exchanges.

- One note about stability of the algorithms: only the Bubble Sort and Insertion Sort are stable
- algorithms. Thus, they are the only algorithms that preserve the ordering of equal components
- without use of a selector function. In all cases, a selector function may be specified to introduce
- stability into the sorting algorithms (see example #3 below).

:-" type Sort.._Algorithm-Type Is (Quicksort, Bubble-Sort,
Bubble-Sortwith-Quic-=xit, Selection-Sort, Heapsort,
Insertion-Sort);

- Quicksort: Order nlog(n). Is most efficient when used with large, unsorted arrays.
- Recursive nature may introduce significant overhead for very large arrays.
- This is the default algorithm. Instable algorithm.
- Bubble-Sort: Order n"2. Is most efficient when used with small arrays that are almost
- already sorted. No recursion. Brute force. Low memory requirements. Stable
- algorithm.

Bubble-Sort-with Order n"2. Is most efficient when used with small arrays that are almost
- _Quick.Exit: already sorted. No recursion.Same as bubble sort above except brute force is

limited. Instable algorithm.
- Selection Sort: Order n1*2. Is most efficient when used with small arrays in which the

Component Type is a record type. No recursion. Brute force. Number of
exchanges is lower than Quicksort. Usually better than Bubble Sort. Instable
algorithm.

- Heapsort: Order nilog(n). Is most efficient when used with large, unsorted arrays. No

... =.

. . . .. . . . . . . . . ,I



- - -. -- - -. - r r r r

NRL Code 2490-0035
LMSC/Mendal

- recursion. Very low memory requirements. Number of comparisons is usually
- two times greater than Oulcksort. Number of exchanges is usually four times
- greater than Quick3ort. Instable algorithm.£

I nsertion-..Sort: Order n*2. Is most efficient when Used with small arrays that are almost
- already sorted. No recursion. Brute force. Usually better than Bubble-..Sort.
- Stable algorithm.

* - The following type declaration should be used to specify the instrumentation analysis data that
-can be returned by the SORT procedure below. - 1 is only returned if an overflow in calculations
-has occurred. The SORT procedure will not terminate if an overflow in instrumentation analysis

* - data calculations occurs.

type lnstrumentation-Analysis..Type is range -I SYSTEM.MAX....NT;

- the following procedure will sort a one dimensional array of components. It can sort in
- ascending/descending order or any user-defined order. it can s30* components of any type that
- support equality, inequality, and assignment (private types). The array indices can be of any
- discrete type. The number of comparisons and exchanges can also be returned.

procedure SORT(
Sort-Array In out Array-..Type;
N umber-..of...Comparisons,
N umber....of..Exchanges out I nstrumentation-...Anaysis-Type;

*Sort-.Algorithm in SorL..Algorithm...Type = uicksort);

* - the following overloading of procedure SORT should be specified
--when noinstrumentation analysis data are required. i

procedure SORT(
Sort-..Array in out Array-...Type;
Sort-Algorithm in Sort-Algorithm-..Type = uicksort);

end SorL..Pac;

- Example uses/i nstantiat ions: v
- EXAMPLE #1: Sorting an array of floating point numbers

* - with Sort-.Pac;
*- procedure Main is

* ~- subtype My-..Component-.Type is FLOAT range 0.0. 100-...000.00;
* ~- type My.....ndex...Type is (Sun, Mon,Tue,Wed,Thu, Fri,Sat);

- type My...Array-..Type is array (My....ndex...Type range < >) of My..Component-Type;

- package Ascending-..Sort is new Sort-P.ac(
- Component-..Type = > My-..ComponenL..Type,
- Index-...Type = > My-I.ndex...Type,
- Array-..Type = > My....Array....Type);

- package Descending-..Sort is new Sort-.Pac(
- Component-.Type - > My-..Component...Type,
- Index-...Type -=> My.....ndex-..Type,
- Array_..Type =-> My....Array-..Type,r

p <U =~ . .> U

460



NRL Code 2490-0035
* LNISC/Mendal

- My-...Array MyAray...Type (Mon .. Fri);
* ~- Number-..oL...Comparisons,

- Number-of...Exchanges Descendifg-Sort.lfltrumeftatio-Analysis-Type;

* - Ascending.Sort.SORT(My... Array);

Sort-Array - > MyArray,

- Number-oL.Comparisons - > Number-.of-Comparlsons,
- Number..oL..Exchanges - > Number..of-Exchanges,
- SorL.Algorithm - > Descending...Sort.Subble..Sort);

* end Min;.su

-- EXAMPLE #2: Sorting an array of records based on a key field
- with Sort-Pac;
- procedure Main Is

- type My-Component-jype 13
- record
- Fieldl 1 INTEGER;
- Field2: FLOAT;

* - Field3: CHARACTER;
- end record;
- subtype My-jndex-.Type is INTEGER range - 10 ... 10;

*- type My-Array....ype is array (My-..ndex-Type range < >) of My-ComponenL..Type;

-My-Array: My....Array..Type(-10.. 10);

- function Ascencing-Selection-on-Fiedl(Left,Right in My-.ComponenU-Type)
*- return BOOLEAN is

- begin
- return Lett.Fieldl < Rlight.Fieldl;
- end Ascending-Selection-on-.Fieldl;

- function Descending-Selection....on-...Field3(Left,Right: in My-Componen..Type)
* -- return BOOLEAN is

- begin
- return Left.Field3 > Right.Field3;
- end Descend ing-Selection...n.Fied3;

* -package Ascend ing..So rt-oflField 1 is new SorL..Pac(
- Component-.Type = > My-Component-Type,

* - Index-Type => My..Jndex...Type,

* - Array-Type = > My-Array...Type)

-package Descend ing..Sort-on- Field 3 is new Sor.-Pac(

* - My-Index..Type, My....Array...Type,
* - ~Descend ing-..Selection-..ofln-.Field 3);

-Ascend ingSort..on..Fieldl 1.SOR r(my-Array);

461



NRL Code 2490-0035
U LMSC/Mendal

-Dscending._Sort..on-..Flld3.SORT(

- Sort-Array - > MY-Array,
- SorL..Algorithrn -> Descendlng-Sort.on.Feld3.SelectioL..Sort);

-end Main;

-EXAMPLE #3: Sorting an array slice of access types that point to records.
-with SorL..Pac;
-procedure Main Is

-type Taxpayer-..Type Is
* - record
* - Name STRING(1 . 40);

* - Age NATURAL;~
- ID....Number POSITIVE, - social security nimber

- end record;
- type Taxpayer....Access-Type Is access Taxpayer-Type;
- type My-Jndex-.Type is range 1 .. 10000
- type My-Array-Type Is array(My-index....ype range < >)of
- Taxcpayer....Access...Type;

-My-...Array: My-Array..Type( 1 -000-0O00);

-function Ascendi ng-Taxpayers(Left, Right : in Tax payer-Access-Type) return BOOLEAN is
-begin

- return (Left.Name < Right.Name) or
- ~((Left.Name = Right.Name) and (Left.ID....Number <
- ~Right.ID....Number));

-end Ascend ing...Tax payers;

-package Ascending...Taxpayer...Sort Is new SorL..Pac(
-Tax payer-Access-Type, My-ndexType, MyArrayType,Ascend ing-Taxpayers);

-Ascending-TaxpayerSort.SORT(MyArray(100..1..OO));

* - end Main;

462



NR oe2490-0035

NR oe LMSC

K . APPENDIX II

ROLM MSE-800 Benchmarks

NOTE: The data provided below has been averaged from a combination of benchmarks run for each of the three tests.
In order to condense the amount of material, only arrays of size 1, 10, 50, 100. 500, 1000, 10000, and 100000 are

*provided. The results of the ascending and descending tests have also been averaged.

Only the individual algorithm statistics are being presented.

L

r

463



NRL Code 2490-0035
L.MSC/Mendal

Fixed Point Types

Algorithm Array Size Comparisons Exchanges CPU Time (in mns)

Heap 1 0 0 1
Quick 1 0 0 0
Bubble 1 0 0 0
Bubble w/Q 1 0 0 0pSelection 1 0 0 1
Insertion 1 0 01

Heap 10 42 46 7
Quick 10 15 8 6
Bubble 10 45 238
Bubble w/Q 10 30 23 7
Selection 10 45 7 4
Insertion 10 30 32 4

Heap 50 427 357 58
*Quick 50 221 65 47

Bubble 50 1225 613 198
Bubble w/Q so 659 61318

*Selection s0 1225 46 80
Insertion 50 659 662 70

*Heap 100 1049 814 129
Quick 100 433 158 102
Bubble 100 4950 2475 766
Bubble w/Q 100 2571 2475 700

*Selection 100 4950 95 297
Insertion 100 2571 2574 257

Heap 500 7595 5266 897
Quick 500 3607 1043 690
Bubble 500 124750 62375 19312
Bubble w/Q 500 62869 62375 17113
Selection 500 124750 492 7271

*Insertion 500 62869 62874 6225

Heap 1000 17203 11552 1991
Quick 1000 733623917

Bubl 100499500 249747 81232
*Bubble w/Q 1000 J50740 2.49747 70277

Selection 1000 499500 994 29101
Insertion 1000 250740 250746 24827

Heap 10000 239239 149428 Z6960
Quick 10000 105644 30897 19188

*Heap 100000 3057951 1827542 346091
*Quick 100000 1344159 405503 Z41666

464



NRL Code 2490-0035
LMSC

Records

Algorithm Array Size Comparisons Exchanges CPU Time (in ms) I

Heap 1 0 0 1
Quick 1 0 0 1
Bubble 1 0 0 0
Bubble w/Q 1 0 0 0
Selection 1 0 0 1
Inserion 0 0 1

Heap 10 42 46 10
Quick 10 20 9 8
Bubble 10 45 23 11
Bubble w/Q 10 30 23 10 L
Selection 10 45 9 5
Insertion 10 30 32 5

Heap 50 430 358 86
Quick 50 212 60 59
Bubble 50 1225 613 269
Bubble w/Q 50 659 613 247
Selection 50 1225 45 123
Insertion 50 659 662 95

Heap 100 1056 817 216
4 Quick 100 54 153 141

Bubble 100 4950 2475 1057
Bubble w/Q 100 Z 571 2475 988
Selection 100 4950 92 528
Insertion 100 2571 2574 364

Heap 500 7610 5293 1566
Quick 500 2959 1064 866
Bubble 500 124750 62375 27215
Bubble w/Q 500 62867 62375 25141
Selection 500 124750 496 13557
Insertion 500 62867 62874 9048

Heap 1000 17260 11604 3543
Quick 1000 7254 2333 1985
Bubble 1000 499500 249747 109521
Bubble w/Q 1000 250738 249747 100408
Selection 1000 499500 994 53402
Insertion 1000 250738 250746 36232

Heap 10000 239308 149542 4691.
Quick 10000 102837 31037 25913

Heap 100000 3059612 1828669 531034
Quick 100000 1197858 410224 321255 :

465

..........................................-...-..... :-:.:.



NRL Code 2490-0035
LMSC/Mendal

Access Types that Designate Records&

Algorithm Array Size Comparisons Exchanges CPU T'ime (in mns)

*Heap 1 0 0 1
Quick 1 0 0 1
Bubble 1 0 0 0
Bubble w/Q 1 0 0 0
Selection 1 0 0 0
Insertion 10 0

Heap 10 42 46 9
Quick 10 20 9 9
Bubble 10 45 23 10
Bubble w/Q 10 30 23 9
Selection 10 45 9 6
Insertion 10 30 32 5

Heap 50 430 358 78
Quick S0 212 60 64
Bubble 50 1225 613 246
Bubble w/Q s0 659 613 208
Selection 50 1225 45 134
Insertion s0 659 662 86 .-

Heap 100 1056 817 190
Quick 100 544 153 151
Bubble 100 4950 2475 1062
Bubble w/Q 100 -2571 2475 900
Selection 100 4950 92 533
Insertion 100 2571 .2574 337

Heap 500 7610 5293 1304
Quick 500 2959 1064 913
Bubble 500 124750 62375 25545
Bubble w/Q 500 62367 62375 20572
Selection 500 124750 496 14174
Insertion 500 62867 62874 8060

Heap 1000 17260 11604 3086
Quick 1000 7254 Z333 2055
Bubble 1000 499500 249747 105419-
Bubble %v/Q 1000 250738 249747 85103
Selection 1000 499500 994 60128
Insertion 1000 250738 250746 33311

Heap 10000 239308 149542 41163
Quick 10000 102837 31037 27708

Heap 100000 3059612 1828669 519139
Quick 100000 1197858 410 224 340098

466



* NRL Code 2490-0035
LMSC

* APPENDIX III

DEC VAX 11/780 Benchmarks

* NOTE: The data provided below has been averaged from a combination of benchmarks run for each of the three tests.
* In order to condense the amount of material, only arrays of size 1, 10, 50, 100, 500, 1000, 10000, and 100000 are

prov ided. The results of the ascending and descending tests have also been averaged.

only the individual algorithm statistics are being presented.

467

~%



NRL Code 2490-0035
LMSC/Mendal

Fixed Point Types

Algorithm Array Size Comparisons Exchanges CPU Time (in ms)

Heap 1 0 0 3
Quick 1 0 0 0
Bubble 1 0 0 0
Bubblew/Q 1 0 0 3
Selection 1 0 0 0
Insertion 1 0 0 3

Heap 10 42 46 5
Quick 10 15 8 8
Bubble 10 45 23 3
Bubble w/Q 10 30 23 5
Selection 10 45 7 3
Insertion 10 30 32 5

Heap 50 427 357 45
Quick 50 221 65 30
Bubble 50 1225 613 95
Bubble w/Q 50 659 613 68

- Selection 50 1225 46 63
Insertion 50 659 662 63

Heap 100 1049 814 110
" Quick 100 433 158 63r

Bubble 100 4950 2475 368
. Bubble w/Q 100 2571 2475 270
* Selection 100 4950 95 238

Insertion 100 2571 2574 248

Heap 500 7595 5266 743
Quick 500 3607 1043 410
Bubble 500 124750 62375 9473
Bubble w/Q 500 62869 62375 6713
Selection 500 124750 492 5930
Insertion 500 62869 62874 5930

Heap 1000 17203 11552 1633
Quick 1000 7336 2349 858
Bubble 1000 499500 249747 37148

- Bubble w/Q 1000 250740 249747 26785
, Selection 1000 499500 994 23738

Insertion 1000 250740 250746 23660

Heap 10000 239239 149428 22580
Quick 10000 105644 30897 11098

Heap 100000 3057949 1827453 284660 - -

Quick 100000 1313317 406018 134773

468

.. . . .... . . . . . .......... .... . .. . ... . ....................



NRL Code 2490-0035
LMSC

Records

Algorithm Array Size Comparisons Exchanges CPU Time (in ms)

Heap 1 0 0 0
Quick 1 0 0 3
Bubble 1 0 0 5

, Bubble w/Q 1 0 0 0
Selection 1 0 0 0
Insertion 1 0 0 0

Heap 10 42 46 10
Quick 10 20 9 10
Bubble 10 45 23 10
Bubble w/Q 10 30 23 10
Selection 10 45 9 5
Insertion 10 30 32 8

Heap 50 430 358 85

Quick 50 212 60 68
Bubble so 1225 613 520

Bubble w/Q 50 659 613 223
Selection 50 1225 45 133
Insertion 50 659 662 110

Heap 100 1056 817 215
Quick 100 544 153 150
Bubble 100 4950 2475 1073
Bubble w/Q 100 2571 2475 1775
Selection 100 4950 92 500
Insertion 100 2571 2574 425

Ht.ap 500 7616 5296 1433
Quick 500 2962 1065 858 ,
Bubble 500 124750 62375 27433
Bubble w/Q 500 62867 62375 21865

-"Selection 500 12475C 495 12410-.

Insertion 500 62867 62874 10198

Heap 1000 17252 11604 3203
Quick 1000 7176 2330 1895
Bubble 1000 499500 249747 107823
Bubble w/Q 1000 250738 249747 87565
Selection 1000 499500 993 49698
Insertion 1000 250738 250746 40795

Heap 10000 239262 149484 43831
Quick 10000 100473 31129 25025

Heap 100000 3059253 1828439 561860
Quick 100000 1236385 408755 310923

469

. . o , ~ . . . . . . . . . . ." ...
.. . . . . . . . . .



NRL Code 2490-0035
* MSC/Mendal

Access Typos that Designate Records

*Algorithm Array Size Comparisons Exchanges CPU Time (in ins)

Heap 1 0 0 3
Quick 1 0 0 0
Bubble 1 0 0 3
Bubble w/Q 1 0 0 3
Selection 1 0 0 0
Insertion 1 0 0 3

Heap 10 42 46 8
Quick 10 20 9 10
Bubble 10 45 23 3
Bubble w/Q 10 30 23 S
Selection 10 45 9 8
Inseifion 10 30 32 8

Heap so 430 358 75
Quick so 212 60 53
Bubble 50 1225 613 155
Bubble w/Q 50 659 613 113
Selection so 1225 45 130
Insertion 50 659 662 98

Heap 100 1056 817 180
Quick 100 544 153 123

Bubble 100 4950 2475 645
Bubble w/Q 100 Z 571 2475 433
Selection 100 4950 92 530

*Insertion 100 2571 2574 370

* .Heap Soo 7616 5296 1245
Quick 500 2962 1065 723
Bubble 500 124750 62375 17148
Bubble w/Q 500 62867 62375 10765
Selection 500 124750 495 13108
Insertion 500 62867 62874 9103

Heap 1000 17252 11603 2810
kQuick 1000 7176 2330 1640

Bubble 1000 499500 2-49747 684-15
Bubble w/Q 1000 250744 249753 43365
Selection 1000 499500 993 52955
Insertion 1000 250738 Z50746 36538

Heap 10000 239295 149482 40090,

Quick 1000 100473 311:9 22023

Heap 100000 3059238 1828434 786968
Quick 100000 1236385 408755 345570

470



NRL Code 2490-0035

RESUME

Geoffrey 0. Mendal .-

RECENT OPERATIONAL EXPERIENCE (1981 - 1935):

Lockheed Missiles and Space Company (1984-1985)

Wrote the content for an extensive Ada questions and answers data base used to test the knowledge of Ada pro-
grammers.

Researched, wrote, tested, documented, and benchmarked a production generic sorting package in Ada.

Wrote a prototype generic searching package in Ada.

Wrote a time/date conversion package in Ada.

Authored five research papers for an intensive study of Ada under contract.

University of Michigan Computing Center (1981-1984)

)esigned, implemented, tested, benchmarked, and documented an on-line documentation retrieval system. This
system is currently used by the University of Michigan students, faculty, and researchers as the sole source of on-
line explanations for the general computer system.

.* University of Michigan Computer Science Department (1981-1983)

Helped to teach undergraduate core Computer Science Department courses. Led discussion sections, graded assign-

ments, and consulted with students.

Independent Ada Research (1984-1985)

Heading a major Ada software development project outside of Lockheed Missiles and Space Company, with the
goal of developing a more profound knowledge of Ada software engineering.

ACADEMIC WORK (1979-1983):

BS (University of Michigan) in Computer Science; GPA: 3.26/,4.0

CONSULTING WORK (1981-1984):

University of Michigan Computing Center

Provided consulting services on the general computer system for students, faculty, and researchers.

' COORDINATES:

* ockheed Missiles and Space Company
I I I Lockheed Way, Department 62-1I, Building 563

Sunnyvale, CA 94088
408-743-1191 471

-' -' - -.. . . . . . .. . . . . . . . . . . ..- . .. .'....-. . . . . . . . . .."' "i n i "" "
"

"" - l "' - "" " -n~ -""'



• o-

-.-

-- •

oc

0c

) ...

.con

47



- ~~~~~~ 1.r, - - - - -. - .- 7 lk. .... . r

a) CL

7.. C.D

0 0)
0 Cu

a. a) a
a,~ 0

0) 0)-

0 u 0.0C
0 Q

o ~U 0)-

(D CD) 0

7) 0j z,
>) 0

0 L0

c U~ 0 4-3



- . - *.- vi VIP lwkv vv . -. t ,* .. S -IT -I -,3 7-N

',,',

544)

",,U,

i2

cc

,° .

LM 00

• Co- "- .-,?
¢0 - 0 -

C.)0.

,i,,

0) w 0

crr

co 0

mu 0 a, a,

0 0 a, 0.

oo 0

474a,

.' .' - ' " " "" ". . . . . . .- " - ,2, , , . .. ... .._ ,. , ... ...:. ',_ ._. .._ .., , :_ , '. .Cu,
I0



-
-. .~L -.

Iv-

,%. ~..
'.~. L.~-

-a

U,

E V
4-
0

em

I.- 
C

o 4-
0
0

o
- C

C 0)

.- 
4-

U- 

N

0 0
0 0

2
C 2

o .2 0
Lu. 4- 0
- 0~ C 0~ .~.

C C C
.- .- - 0 0 v- 4-

m

0 0 0 0 C -.0 0 0 LI~ Cu
- 0~

.~ Cu b..

-' C ~.. C 2
cu 0

LL U) ~-. 2
X 0 C

.2 w ci, 0

0 0 * 0 0

.5
2

ID

2
ID=

1~4

475

I,

........................................... ~



-W CL

CU E

.0

CU -C

0D

- 4-)

o - CL

oa Ca.

0 .0

00 0

U)U

a. (U ,D

M- 0. 0s 0.

0 cc

(n a, 0 -

476U C



5.)

Cl) a
oct ccah.

oD 0 -

m cc

0 CL
m C c,

C 00.sC

a 00

00.

0 0

0L CC-
co

C/.4 07



4)'

U) )
4)

1 0 -

4)

4)

0.

CC

o U)

4))
0

0 cuc)

4) )

cc 4) >&. o

zts 0) C) I

0 - 0 0
4)

CU 0 C) Cu

CSF CO a_) E

0) 4- .

cc 0. m

0- 0

0 0 0 E Z0
V 0.0

C) Q)

00
C) 0 0C

0 _ U Or-)

0 47C

* 0 CU



0-

0)0

son
cr4-

00

0~ 0

C;

0)

cu c

(j 0
3- 0)

E- >Q CDa

M. (D 0

CDC 0 c~
- mC -o2 c

o ~ 0 C,)uO 0o= *x. 0)U.L 4- (D C

47



.2~ Cl)

b.

ca

E co

CD CM

ca,

i0
IQ))

o co
E0

4804



030

0. 0
93E - Uo 0 a,

co 0 a C
.2 U) .2 U

Zm 0 -0

a) . U4 1



E

0 0.

0)

ca a f

ca0 C 4 Uco
lU c-0 '4-

-~ a- cU

- 4- 048C



00

nc

00

4,-



BE
U-o

LI
0)0

0)0

0 U)

Cl)D

"Em

0i0

f4-

C C.)484



0 3

Q 0c

c0
0.0
00

I=0 cc

00
CD0

cc 0)c
Z.

0L C,

48



0

00
CD~.

00

CMC

cc 0

f) 0
486



0

ca,
o 0

o do
0 0c0

.00

C) cc

Al 0 z .
0) 0

CU

a, 87



I,.

C0
C

a.

C

Cb..* 

a,.5w

0 *-
0

I...

* LU
Cuo 0-
x= C

0o 
C

'4 ~
1

-
0
-Cu

- Vo 0U, 
_ E

0
4) 

- VV 
CE '1*CU

.0 
C

- 0
C

0
Vo V

Cl) 0

E0
I.- 

0 .5Cu

0
0

C* 
E z 0

* Sc 
0* =

4,

,* Wa
C,,

* E*4

S 0 0

£

488

'2.~.



4) 0.

t-. 0-'

5.0 0o

0 -
o 0 0 . *4

00
0 0

00

E 4

48



CLC
cc5

CD 0

0%

40

oft0



0t

00

00

cc 0

00
70 0 ,

-000
(fl(0

%- %6-

0. 0 t

0 ~ 0 cm

0 00c
- ~~ E

z 491 .



CLL

I'

i0
C.

E

0

one Q

cc 0

E00

0 0

-.- E

E =

E U. E - ,

02
00

So -o--
0.. -o

o m .

0 0w -i

492

*' 4.

i." " - -." "- " '- ' " - ." " " • • ". - - "- " " -" "- • .' .'- .' '. '. -- .-.' .-' ., ' ', -'. , -' '- '- '. '- '- '- .' '. -' '- .'- .' ' S '- .' ? ..' '. -" "- .' "-.



o. - , I

4a

co 0
0) 0

0 E &

00

00

0~ 4)

CL 0 

(Ip r- 0 10
4) 0 li0

C - 0C

CL 00 02 0
o x ca CU3 0 - o

4) 0
2

0D 0 0 E 0 0
b Cc x cmC, 0 m) CO" ,4 ( *o~

0 0 0

ac0 E% go 4) 4)M 4) 40C
- C -L

C 0 > 0.

0 W 00~ 0C 0

4) 00fl. 4

V) I CC

0 ~ 493



cm,

C13

Ea E

o 0

CLM cu CL

o 0 o0

CD EE .

0 U 0 0 4) CI)
Lf 0~a (5 CD

4)~6 4)4) 4

494~



0.

Cu 0L
>% 0

EE

0L a

av

4) CL
w ~ 0 Im 0 a.I'- >,-0 CoCJ

LU EC 0

0.

- 495



0

0 -J
CC Ecm

(U)
r--

am C

LL 0-0.

o) C13 (
(D C

.0 0 ) w

- ~ Cu c/~~C O
CU cc c 01 G), ~cS do~, 2C x

0.

a496



... .

low,

0.°

Ulu >%

<> 0=:~ ~ CL . . ...
cm 0.

0 (L c

l .. . .. 0
.00 -. J ,, ..

z<__ . Io< .v
c
0) -I - ....

-,.- ,.,

) G .. 0 0..

0Z 0  X x 4E 0Ea Cc~ '

. L -

hi 0 x0 0z L C
0 wK.0c

.'-'.." . , '

x a'

c~ ~

4) c

~~497"'



.0.

'CE

CC

E
0 ~ E Ocm( c .LU

CL~ X &

CL toE

0m 0
mu E~ 0*

cis 0 z

En CD X C

0o 0 cc Z

cIco
:E CL-0. V

LL0 c . X ~c 4

E0 0 a

umu

3%

'498



CID6 4)
h..o 0. UCL

E cn 0

o~ 0.

0. U) h.. X 0 a

.0L _- x C

m - I- L

Eh IL 0"

0 .C0.

L)U

3 <499



0

00

00

00
- CL

o E

0 0.

CL 0o Cc

cc 0 -V~

C C0

o 0.

0' ch

MW0 0

0 0L 0
0 4) 0

v C-
- C-

CC

0 0~1 00 o cm

0 ox -

500



oC 9-.

CL 0 cL o.

0o >, * .

CLU

b-
Owl~-

4-.-IY

00 0

CECc

0.

E CCOu 0 (
0(.. oEc 0 1cm*-

s4 00

- .b-

501



iu

c wb

kmm

>_ 0

co < 0 0
L to

Dom *0 t

0 ;r

00

0
z 66 0.t CO

2 (009 E w cc 0 o
-S 0

* C 66 ' h -

~ ~Q~%~I502



icis
IC1'

x
s II-

0. a, .. : 2

0) 00.

voc

a 12

C * L
FC ~ ~ 0 %V

0 -0

o. o

Ut,
-> C 0 0 x x C

cc 0 Cu I

o1 0 1-

Cu *l
0 = a

Cu.%C-

503 U



' -. - - - -_. l+ . . .. . -- ' . , . ..-. +... - - .. .

o n

Oft.0 0 .M

4w E E -0.'

0-<

CL 0

Cc 0>% a,, L CL . V 0, a> CL CL--

b• - cc Ia ) m cc ca .- . '

0) E E

06 - -- 0

060
00 x(UTD

0 0 90 to>

-. Xj. -

x N
0 0CL

0 0.1 I A II II50"" I ' . "I"

- w~~~' i.z O - .'

:; € .. ®x >" 0 .0 I , ::

"..%

v. f f,--.-.f f-..-:f
,t - . . . . . . . . . . . ..4t t ft f . f f f t



Vi l

0

o 0. -,

- 0 m ,- S."?

CE)4

ig C L"
0.., 0IZ""

0f ,,. I. oWC 0 .').

00 0

0 i=- -_

o

-"f U _ E , .

(j CE) 3 ,_ AAAA I

-o =.-..

ccm am am

.OW. . .. 1111,

0 0 0* ~ 0 0

0CD0 0

a) .V, 00 00 0
~~0 0 xCZ5 ~~0ca 0 CL c OC

1= CM- 1 0
0O a CL)

E0 o .2o~E'
0 cmx

* ... I.. ~
0 °5056

xV

" . . . . . .. . . . ". ."S *' 
.

".0 . . . . . .. . . . . -. . .. - .'.". -"-.c''.." .. .' ...'. . -_% ', L; .g

-L-,-'.€ .. - . .'-','.. "-"- -" .•



E 0

cc 0
00

EE

0o 00

0)0 CD

0 0
Q 0~

cc 0 C )

0 a )

00

P. 0=E cc -
0 8 c0

0 0
c- CL U

U))

0 06

- -0
0 - 0

o Cu 0

0 Cu6

. .) C . 0



bust~~w

0 u

00

0 0 Q
0

ot0o

c;0,



LI

C L6

o 9L

508.



LU~uN

I U J

00o An
U

LU eU

LLL

o 09

... .... . .. ...



UA

LUU

o aj

U.

LLI N U U)N

0510



crC.

CD a w
k* 1"1

(SON003S N

o IL



- JAi

LLI 0

U
x

Cc,

Ln f4

*SN:3 NO

u I0

I,- 512



- - C --- * *-l - C . - . .T- -- -.

X.T.- -V -- w TIM S~ A-

ujj

LLU

Cc,.

u IL

513r



Nm -W W--r N W

N U

UJU

0 0

Inr -rf -

(SNON3 NOI

'514



L.p

du

Ul

00

u CL

r5 1



0)) (D

0 7r.L5

00=

o C0o

0 C

00

~SS. 00

00
x~ sE- =

ow5

'5 0 0 'o.

0 _
-w-

-o
0

00 0

5165



co w

ca 0
0 to

0 0c
cc E

h.2

0L 0 0LC 4)

0 CL

cc @7 mc
CL)

-S E

0 K0

0. CLi. C= 0

h - Z

~~.IIill- oi

. . . . C



0 C 0.

0

0 - -0

-L 0

CDu

0m cc CM
* L 0 0

0)~ 0 0 c - D
0 Co

0 -
0 0 0O~0 ~
0 0 2. E g- 0

0 0-3
0 0 E0x - - Cu

0 0 0. ~cc 0 ~

cc$ 0o a ~ o
a E00 a 0 0 0

_L 
0 C

% - ow - - E
0 2000 rCu

co 0. 0 cm~ 0
(D ( 0 0 oo c
bw I 0 '

0 cc
0 _ 0C~ C

e .

0c
4w 0

0. 0 0.

C L CL 0 o o 6) 0 0 0 .9

cc c
g0

518



le

%°.

00

;I
00

-d Cu

Lo 0 3

0"

0 0 c.m

- _- -. Vl

o 0 -ab.5
C , E CD 0.).

c .'.-

-_Cc

~ ~ G W.. ,.":

c . =a

0o Cu %u

0.
CL 0 Cu )

Ca CLu

01 CcucC
0 0 C

V~~~ 0cu0.C m C

Cu Cu o Cu Cu
Cu .N 0 0 C Cu

- 0 u Cu ~

0 -oom

* $ e •u • VO• C "

519

Cu...-.-,Cu:......2 ..0



%

. . b  
.

Achieving Reusability of Ada Packages

Susan Mickel
General Electric Company

Military and Data Systems Operation
1277 Orleans Drive

Sunnyvale, CA 94086

One of the goals in introducing the Ada(*) items in the library to be classified under several
language for software development is to increase categories is extremely difficult. For example,
productivity though significant increases in one category would relate items used in avionics
software reusability. The packaging feature of systems; another category would relate control
Ada provides the mechanism for designing reus- algorithms. Some components would be in both
able software components. However, regardless of these categories.
of how many thousands of potentially reusable
packages are available in a program library, reuse At the present time, reading package

will be limited by knowledge of what is available, specifications is the usual method for locating
In other words, system designers need efficient packages for reuse. Specifications include all the
mechanisms that will quickly and easily locate information required for a designer to interface
packages to satisfy their requirements. to that package from an Ada program. If mean-

ingful identifiers have been used and the
There are two facets to this ,nroblem. First, specification is well commented, a designer can

the process conventionally referred to as determine whether the package will be useful in
requdirements analysis must be conducted in his application. However, this technique is feasi-
such as to permit identification of reusable ble only when the number of available packages
software at relatively gross levels. One must be is quite low. To achieve reusability on a large
able to identify entire subsystems for reuse, not scale, more sophisticated methods are clearly
just individual modules or packages. Second, needed.
information about available software must be

. structured and maintained so as to maximize It is the author's contention that a general,
accessibility, long-term solution to this problem requires a

much more powerful approach. One such
This is hardly a new problem, as anyone approach is to apply expert systems technology to

who has used a library to write a research paper the problem. Consider the situation a few years
can attest. A Classical library approach could be hence wsusandmap as mangethe library. The
taken, i.e. categorizing packages by function or designer needs a tool that will allow the defior
application area. There are difficulties with ambiguities in the requirements provided should
schemes of this type. Categories are difficult to be noted and corrections should be allowed, again
select. A user has to "guess" what categories may in a natural-like language. This tool should
apply to a problem, usually producing a very request a manageably small set of candidate pack-
large number of candidates to examine in detail. ages for each defined requirement.
Users may interpret categories differently from
the package author and fail to locate useful pack- Currently, no successful tools of this type
ages. As libraries expand, some categories may exist. Expert systems technology does exist,
have to be subdivided into subcategories. A however, and has been proven in a variety of.
more complex categorization scheme requires a other applications. A significant amount of
more complex path to reach a particular package research will clearly be needed to make a tool of
and a more difficult query to be prepared by the this type a reality. Without it. however, Ada can-
user. Development of a classification system not produce the much needed increase in produc-
which can be easily extended and which allows tivity required to ease the software crisis.

I') Ada is a registered trademark of the U.S.
Department of Defense

521

............... "K ;- > :•. :~ ~ *--* i . .> - .. . . . -.. .. . . . , .. , ,. . .,, '-'-.o".." ". -. ' --. - -. " %



GENERAL ELECTRIC COMPANY 1.3 LANGUAGE TOOL KIT

CORPORATE EXPERIENCE AND
The Language Tool Kit is a compiler-

ACCOMPLISHMENTS compiler and other language-oriented software
engineering tools developed at CRD and

General Electric has a substantial ongoing currently in use in ABG. The Language Tool Kit
research program in software engineering tools is written in Ada and produces compilers written
and environments, software productivity meas- in Ada, Pascal, or C.
urements, computer languages and compilers,
expert systems, and related areas. 1.4 REWRITE RULE LABORATORY

The Aerospace Business Group (ABG) The Rewrite Rule Laboratory is an environ-
employs over 2000 software development profes- ment for performing research in automated rea-
sionals engaged in software projects of all sizes soning that has been developed as a part of a
ranging up to hundreds of person years. In sup- joint NSF contract with the Massachusetts Insti-
port of this effort. ABG devotes a significant tute of Technology. The Rewrite Rule Labora-
amount of its IR&D and other funds in research tory includes an interactive user language, called
to develop new software engineering tools, I, a user interface, and a number rewrite-rule- ..

methodologies and measurement techniques to based theorem provers. The Rewrite Rule
increase productivity and quality. Among the Laboratory is being used extensively to perform
outputs of this effort have been software geometric reasoning for image understanding.
development environment (SDE), a software g c ned
development environment on the VAX, and 1.5 AFFIRM PROGRAM VERIFICATION
software engineering and management (SEAM), SYSTEM
a software management methodology, both of
which have been widely used by ABG on govern- Corporate Research and Development is
ment contracts.CoprtReerhadDvlmnti currently under contract from Digicomp Inc.

(through Rome U.S. Air Force Development
The following paragraphs provide brief Center) to upgrade Affirm, a program verification

overviews of specific experience and accomplish- system, for possible use in verifying Air Force
ments at specific components of the General software. Within GE, Affirm has been used to
Electric Company. verify flight control software at our Aircraft Con-

trol Systems Department (ACSD).
1.0 Corporate Research and Development

1.6 EXPERT SYSTEMS

General Electric Corporate Research and
Development (GE CRD) has a significant ongo- Corporate Research and Development has
ing research program in software environment had a significant effort in expert systems for the
and expert system research. Some related pro- past three years. DELTA. an expert system for
grams are presented in the paragraphs below, locomotive maintenance, was built and transi-

tioned to the GE Transportation Division, which
1.1 ADVANCED ADA DEVELOPMENT plans to make it a product. A number of tools
ENVIRONMENT for constructing expert systems, including Delphi

(a rule-based '.nguage) and Genex (a graphic
For the past two years. GE CRD has con- system for designing expert systems) have been

ducted a project which attempts to bring the built and transitioned to several GE departments
power of modern Lisp-based environments to within ABG, which are now experimenting with
bear on the development of systems on Ada. their use. A proposal. "Reasoning with Incom-
Several tools have already been developed on the plete and Uncertain Information." has recently
Lisp Machine under this project, including a been accepted by DARPA as part of the Strategic
smart editor. Computing Program.

1.2 OBLIGE 1.7 KIT/KITIA

Oblige is an object-oriented language being A staff member of the GE CRD Computerr
developed for a CAD/CAM workstation. Science Branch is a representative on the Ada

522

%""".-. .." ,-.
L..;................................



%-

KIT/KITIA committee, and was the original vs. superset vs "plain' Ada), and that a given
chairman of the CAIS subcommittee of KITIA. PDL should be supported by automated tools in

order to obtain the full utility of the methodol-
2.0 Space Systems Division ogy.

L
Several Ada-related projects have been 2.5 ADA STYLE GUIDELINES

ongoing within various components of GE/ABG
Space Systems Division (SSD) during the past During 1983, a project at GE/DSRM in
several years. Some of these projects are Valley Forge used Ada as both its design and
described in the paragraphs which follow. implementation language. Data Systems

Resource Management studied how Ada should
*2.1 JESSE COMMITTEE be written, and how Ada programs should be

documented. Preliminary documentation guidel-
inesapplied to that project's software. The

General Electric has had a participant from guidelinsubject project and were observed to
* Data Systems Resource Management (DSRM) in facilitate the readaiand/or updating the programs.

Valley Forge, PA serving as a member of the Thbecome productive on tea
Joint Services Software Engineering environment T cm p tioe

*-" Industry Team since its origination. 2.6 COMPUTER COMMUNICATIONS PRO-

'.'* 2.2 ADA PROMPTER AND PROLOGUE TOCOLS

A d a g or p p wDuring 1982 and 1983, a project was con- "
ge An Ada language construct prompter was ducted within DSRM at Valley Forge that used
generated at GE/SSD at Valley Forge during Ada for the design, implementation, and
1982. The prompter permits the user to insert demonstration ofa real-time computer communi-
skeletal Ada constructions into a file being cations system. This project provided General
edited, thus permitting the programmer to focus Electric Company with valuable experience with
more attention upon the program rather than on the use of Ada in the design and implementation
the syntax and semantics of Ada. of real-time systems level computer software as

2.3 DISTRIBUTED DESIGN ENVIRONMENT well as providing a number of valuable lessons
concerning the differences in methodologies and
techniques required to successfully use Ada on a

A set of software tools that are specifically real project.
intended for operation in a distributed environ-
ment consisting of microprocessor workstation 2.7 EFFECTS OF ADA AND OBJECT-
clusters is being constructed and prototyped by ORIENTED DESIGN ON REQUIREMENTS
GE/DSRM in Valley Forge. This distributed SPECIFICATION
environment is intended to support Ada software
engineering during: During 1983, a detailed study was per-

" - design, using Ada as a program formed by Data Systems Resource Management
design language (PDL) (DSRM) in Valley Forge and in Arlington, VA

- Coding, using a context to determine the effects of Ada and object-
sensitive editor for Ada oriented design techniques on the requirements --

- generation of design documentation specification process and the resulting documen-
tation. As a result of this effort, an internal pub-

2.4 ADA AS A PDL lication was generated, and the internal General
Electric software engineering a)under review and

During 1983. a project at GE/DSRM in revisis2.8 ADA EDUCATION

Valley Forge included an investigation of the use
. of Ada as a program design language (PDL). A General Electric/Space Systems Division

survey of existing Ada PDLs was conducted, and has used the TeteSoft on-line computer based
a study of the associated methodology changes quizzes and case studies to provide individualized
and relative success with each PDL was done. instruction in Ada syntax. GE/SSD has also
The results indicate that the modern software developed, documented. and tested a classroom r
engineering methods embodied by Ada seem to course with machine problems in Ada design and
be more important than PDL form (Ada subset programming. In the initial implementation of

523

r

~~~~~* -. ,-. .. .. .. ... .. .. .... ..


. the classroom course, two distinct teaching General Electric Avionic and Electronic Systems
sequences were used in a controlled experiment Division (AESD) facility in Utica, NY. Particu-
to compare learning gains of the students. lar emphasis is being given to the applicability of

Ada of programmable signal processors.
Another Ada training research project was

conducted by GE/SSD to determine the learning 3.2 FLIGHT CONTROL SOFTWARE t

experiences of a programming team encountered
in a controlled experiment based upon the Currently, the GE/AESD fac
redesign and coding in Ada of production
software originally developed in FORTRAN. 3.3 AUTO-CODE GENE
"TeleTraining" courses using stanstechniques at
fivbeen devepresented on Ada resources and A system is being developed at GE/AS NY
business opportunities, software productivity and f generation of systblodiagr
software engineering.

3.4 ALS BETA-SITE
2.9 DISTRIBUTED SYSTEMS SIMULATOR

General Electric AESD Military Electronic
Software to simulate and measure the per- Systems Operation in Syracuse, NY is currently a

formance of distributed data systems was beta test site for the Ada Language System
developed by GE/SSD at Western Systems in (ALS).
Sunnyvale, CA. Ada was used as both the design
(PDL) and implementation language on the Dis- 3.5 MICROPROCESSOR SOFTWARE
tributed Systems Simulator project. CONVERSIONS

3.0 Other ABG Components General Electric/Armament and Electrician,
microprocessors into the Ada language in expert

3.1 ADA EDUCATION form risk assessments.

A fifteen-week Ada course has been
developed and is currently being presented at the

524

%, .

RESUME

Susan Mickel
General Electric Company

1277 Orleans Drive
Sunnyvale, CA 94086

Phone 408/734-4980

Research and Development

o Principal Investigator for building a "smart librarian" which applies expert systems technology to
identify and retrieve reusable software components.

0 Principal Investigator for GE software development methodologies for use with the DoD standard
programming language, Ada (). Principal Investigator for a standardized software development
environment (SDE) for use in GE Space Systems Division DoD software projects.

Management Activities

o Technology Leader for software engineering: responsible for planning, managing, and providing
technical leadership for technology programs in the field of software engineering.

o Past chairperson of the GE Aerospace Business Group (ABG) Software Engineering Panel;
represents Western Systems on the ABG Software Subcouncil, advising senior GE software
managers on Research and Development funding for software engineering.

o Represented Western Systems on blue-ribbon panels to determine GE corporate response to the
DoD Software Technology for Adaptable Reliable Systems (STARS) initiative to improve
software productivity and the introduction of the DoD Ada Programming Language into

projects.

0 Represented GE during technical exchanges with a major Japanese corporation.

Technical Activities

o Systems Engineering for a major classified real-time data system. Developed concept of opera-

tions, wrote specifications and performed analyses compliant with MIL-STD-490.

* o Systems Engineering for several proposals.
o Acted as internal software technology consultant to WS including application of DoD MIL-STDs.
o Five years experience in the analysis, design, implementation and testing of large (over one mil-

lion LOC) and complex aerospace application systems. Responsible for interface with customer
and subcontractors.

Professional History

-. General Electric Co., Space Systems Division
Military and Data Systems Operations
Western Systems
Sunnyvale, CA 94086 1'

o Technology Leader for Software Engineering
1981 - present

() Ada is a trademark of the U.S. Government, Department of Defense

525

.

..:. 52 . -!.-,.

o Math Specialist/Software Technologies
1980- 1981

General Electric Co., Space Systems Division
Military and Data Systems Operations
Military Programs Department
Valley Forge, PA

0 Senior Programmer/Analyst
1978 - 1980

o Applications Programmer
1975- 1978

Professional Societies

o Association for Computing Machinery

o SIGAda
o IEEE Computer Socieiy .

Education

o M.S. 1974 Pennsylvania State University
Major: Computer Science

o B.S. 1973 Pennsylvania State University
Major: Computer Science

5.-,6

;.

526 -.

'. |

-. --.:-

Ada - related Activities "..:-

I. Conferences/Publications:

"Experience with an Object Oriented Method for Software Design"
Proceedings of the 3rd Ada-Europe/AdaTEC Conference
Brussels, June 1984

,.. "

Papers discussing the impact of the Ada programming language on the
software life cycle were presented at the following conferences in
1983:

.Mission Assurance Conference
Sponsored by NSIA, AIA, NASA, USAF Space Division
Los Angeles, CA June 1983

Computers in Aerospace IV Conference
Sponsored by AIAA
Boston. MA October 1983

II. Workshops: Participated in the following DoD sponsored workshops

APSE Evaluation and Validation Workshop 2
Airlie. VA (AFWAL-sponsored)
April 1984

Software Initiative Workshop
Raleigh, NC J6

February 1983
Ill. Related Research:

In 1980, while CPCI leader for the GE Data Systems Modernization (DSM) project Stage If pro-
posal, was responsible for defining the software development environment to support the development
of Ada software.

In the three years following, led several IR&D projects to investigate and validate methodologies
and tools to support Ada software development and to ease the transition to Ada. Object-oriented
design and methodology and methods to promote software reusability are particular interests.

.............

. . . .".. .

33

ar 6

-jw

09

528

-v--s ~-. - ofr - .77 m.
. n W

CA

w
2E

001

aa

-52

V %,

ep

4A-

ata

w -U

w -l

- = aw -

VC W
U,

530 ~

6A.
:00V

21~

4c

wL

- -i

a.. Lu L

tmC.
=j . m

cc
4- V-'c

Lu - K

-c got

a~lA
.. i. 0 4c

.

w ai

0 31

II

LLA

cc ac 09 w

cc zw-

40 L -0 (4

LA 'C ~532

CA31

I=
Lii

IN

LLi

I- i

CA. Z- 4A~d
a-i

Lia

oi LA

wJ 'J 3

~~'r--a-

R vA

at~..

at 2dI

I.6-6

oo

534

.1c.

ion

Cie

W))I Uj c
I) a_

.u I U. Lo

LoCAuAw

Li cc LUJ 2

1 . U L LU ~ . Z1

2C - - U) 2I

0 LU LaiC

LUJ C- 0" Wi 2t

cc2 ~ L W1. U ~ - L

535

777777-73-w I.- N.7-77 . - -,

C6.
cp

4A

.*.

WdC

In

w i-

I- wL

S-C
44 C19

536~

SOFTWARE REUJSABILITY

J. E. Mortison
Software Engineering

SPERRY CSD
St. Paul, Minnesota

1. INRODUTIONtion, test cases and test environments. (See
1. INRODUTIONFigure 1.)

With skyrocketing software develop- Obviously, the motivation behindZ
ment costs, the Department of Defense is software reusability is lower cost, increased
becoming increasingly interested in software reliability and enhanced modifiability. How-
reusability, and the potentials of maximizing ever, the disadvantage of reusability is
productivity and lowering costs associated reduced innovation. To reuse software build-
with reusability. At the request of the ing blocks generated in the past means that
Deputy Assistant Secretary of the Navy, the latest technology must sometimes be
C?301, an Industry Study Task Group was foregone. In other words, there is always a
formed to study the issues relating to trade-off analysis that must be done between
software reusability and to make recommen- the new versus the old. However, when it is
dations as to the feasibility of enhancing reu- determined that reusability is to be used,
sability in future Navy programs. This handsome cost savings are potentially possi-
National Security Industrial Association ble. The Japanese, for instance, are claiming
(NSIA) Industry Study Task Group. ISTG productivity of 2000 lines/ code/ month with
84-2, was formed in 1984. The group, of only .2 latent defects (6 months after
which the author was a group leader, was delivery per 1000 lines of code). The reuse
composed of 22 representatives from 20 of systems, design, and code is the assumed
defense contractor firms. The study results practice in Japan. (See Figure 2.)
were presented to the Honorable Harold Kit-
son. Deputy Assistant Secretary of the Navy Currently there are many supporting.
and his Staff in August 1984. The study DoD efforts and activities which will favor-
findings were also presented to the partici- ably impact the feasibility of software reusa-
pants of the Reusable Software Symposium at bility within the next decade. Some of these
the Naval Research Laboratory in Washing- activities include the DoD STARS Initiative,
ton D.C. in January 1985. These study the Joint Service Software Engineering
findings form the baseline for the Navy's Environment (JSSEE), and the Navy's Reus-
current position arnd plans for reusable able Software Implementation 'Program
software. (RSIP) to name just a few.

2. GENERAL PERSPECTIVE 3. BASELINE INFORMATION

First of all, a definition of terminology In order to identify the issues relating
is required. What is meant by the term to software reusability and to make recoin-
'software reusability"? The Task Group mendations concerning the feasibility of
defined it in its broadest sense to include the software reusability to future Navy programs.
full spectrum of software related items the Industry Study Task Group received
developed across the software life cycle. In Navy briefings on the following key Naval
this sense. software reusability can be used to programs:
refer to functional specifications, software -Restructured Naval Tactical Data
architectures, program design language System (RNTDS)
(PDL) representations, or test cases as well -C?30 Integration Program
as the code itself. Thus. reusability is not - Reusable Software Implemnentationr
limited to code. but may also include reus- Program (RSIP)

Z.able specifications. PDL designs. documenta- - -U1ioat Correlation System (ACS)

537

.. *. .. .

HIERARCHY OF REUSABILITY

GENERIC SYSTEMS

FUNCTIONAL COLLECTIONS FUNCTIONAL ARCHITECTURES

SOFTWARE ARCHITECTURES LOGICAL STRUCTURES

MODULES/TASKS (POL)

MODULE CoDE! CODE

Ficiure 1.

JAPANESE SOFTWARE FACTORY APPROACH -

VS AD HOC APPROACH -

USA JAPAN'

UNES/CODEIMONTH 200 2000

LATENT DEFECTS 115 .2
(6 MONTHS AFTER
DELIVERY PER 1000
LINES OF CODE)

STABLE REQUIREMENTS ARE ASSUMED.
- SYSTEMATIC, CONTROLLED PROCESS ACROSS THE LIFE

CYCLE
- PRODUCTION-ORIENTATION RATHER THAN DESIGN-ORIENTED
- REUSE OF SYSTEMS, DESIGNS, CODE IS ASSUMED PRACTICE

Figure 2,

538

- Advanced Combat Direction System (8) Research must be performed on how to
(ACDS) quantify the cost savings of reusability

- Joint Tactical Information Distribution so that the potential savings can become
System (JTIDS) part of the decision-making process of

- Integrated Tactical Surveillance System the military program manager.
(ITSS)

In addition, several field trips were made to 5. RECONIMENDATIONS

Naval Installations and customer sites.

4. FINDINGS The Study Task Group recommenda-

The Industry Study Task Group ISTG tions to Navy management were as follows:

84-2 findings based on their study efforts and (1) Navy participation in the DoD Initia-
their Navy briefings included the following: tives such as STARS should be

1) Software reusability is currently techni- strengthened.
cally feasible within a given broad appli- (2) More research is needed on the
cation area such as the Navy's Restruc- software engineering procedures and
tured Naval Tactical Data System design methodologies that will enhance
(RNTDS). However more research is reusability.
needed on developing design metho-
dologies that support reusability across (3) Domain analysis must become part of
different application areas. the standard system engineering design

practice and more research is needed on
(2) Software reusability requires a discip- partitioning paradigms.

lined system engineering approach with
the emphasis on reusability placed on (4) Reusability must become an inherent
the initial phases of the life cycle. Reu- part of the military acquisition and
sability requires that domain analysis review process.
techniques become part of the standard (5) Software reusability sub-issues must be
Ssystem engineering design practice, addressed and recommendations made

(3) The current major hurdle to software to provide solutions relating to:
reusability is the lack of military Sowe psr
management commitment, not techni-
cal issues. - Certification

(4) Reusability must become part of both
the military acquisition process and the - Data Rights
military review process.

- Configuration Management
(5) Reusability requires an investment up-

front to create a depository of software - Depository Information Dissemination
building blocks. Only after this invest-
ment has been made can payback - Technology Transfer Mechanisms r
benefits be derived.

In response to the DoD's STARS
(6) Sub-issues relating to reusability that A tr P h dmustbe adresed nclue sch iems Application Task Area Plan, the Study Task -"'.,

Group observed that it is apparent that a ,

as the development of a software com-
ponents depository, certification, data large payback from the STARS Initiative is
rights, configuration management of the possible by maximizing software productivity
components, depository information through the mechanism of software reusabil-
dissemination, and technology transfer ity. It was recommended that under STARS.

the technology of software reusability be
techniques. advanced by funding the following activities:

(7) Trade-off studies need to be performed
on contractor incentives such as royal- - Development of software reusability design
ties and other incentives, methodologies and support tools

.. 39

Development of tools and techniques to the benefit of both industry and DoD within
quantify reusability cost savings the next decade.

Development of recommendations 6. REFERENCES
regarding centralized software deposi-
tories, certification and contractor (1) Mortison, J.E., "System Engineering

incentives Aspects of Software Reusability", DoD ,STARS Conference, San Diego, May ..

Integration of reusability into the mili- 1985 C e c a g,
tayaqiiinadrve-rcse 1985.
taryacquisition andreview processes (2) Mortison, J.E., "Software Reusability:

Technology transfer of" research into Technical Factors and Related Issues",
current industry practice Naval Research Lab, Washington, D.C.,

ISTG 84-2 concluded that with the January 1985.

increased software leveraging and software (3) NSIA ISTG 84-2 Study Report, Wash-
reusability brought into place by the STARS ington, D.C., August 1984. ,.
Initiative, the payback in increased produc-
tivity is going to bring dramatic changes to

5-4

• .

.--.

Joyce E. Mortison
Engineering Manager

Sperry Corporation

Joyce Mortison is currently the Software Engineering Resource Manager for the Under-
seas Applications at Sperry Computer Systems Division, in St. Paul, Minnesota. She has 24
years experience in software development and has served in various management and technical
positions in software technology, development, research and VHSIC related projects.

Prior to Sperry, she was a Research Fellow on the faculty of the University of Minnesota
and has held management positions at the Mid-American Solar Energy Center, General
Electric/NASA, aihd Procter and Gamble. She is the author of 45 technical publications.

Joyce is active in the computer resources management community. She has been an
active member of the NSIA Software and QRAC Committees since 1977. She served as NSIA
Co-Chair of the STARTS Systems Task Area Group in 1983. During 1984, she served as a
Group Leader of the NSIA Industry Task Force investigating Software Reusability. At present,
she is a member of the STARS Application Industry Working Group.

Joyce has a B.A. in Economics and Mathematics from the University of Cincinnati, has
completed graduate coursework in Computer Science at the University of Minnesota, and has
recently completed the Government Acquisition and Contract Management MBA Program at
the College of St. Thomas.

5.

* . T h° . -

z .

44i

0iZ 1

Loo

- C-)

~~540

C 4 4

a. E
0

L))

00
hi

am~~(0) * h

WI Gommo Cl)0

_o cc' 0 V)

0V. C op
Cm Z 4 N N

CO ~43C)

DAVID T. BARRY TAC.

~RONALD G. CLANTON WESTINGHOUSE ro

-4 - .

RON G. DARER E-SYSTEMS

JACK DOZIER ARINC L'2J. R. ELSTON BOEINGrsh'p

OI.EG GOLUBJATNIKOV G.E. "
BOBBY J. GREER SAI

'" DOUGLAS S. INGRAM PRC , '
VPETER J KENNEDY AT&T

ODAYLE MCCLENDON TRWT-"..US
JOYCE E. ORTISON SPERRY
TO PARRISH OEG
RICHARD W SEILER McDONNELL DOUGLAS

!'!;.. T. W. SHEFFIELD HARRIS ":.:
RICHARD J. SMITH SA[
OLWAYNE J. SMIITH RCA
ROBERT STOW SINGER

CATOM L. WALTERS ROCKWELL INTERNATIONAL

WILLIAM WEDLAKE LMSC
HOWARD YUDKIN BOOZ-ALLEN a HAMILTON
J. BIRCHFIELD BBN

544

t '_

................ •
. *. ., ',** *. * .. *4 4..'....

I. S

'U

LU
LU
cc

545

C 68

UL
I-

(U(A0j
U i.
g U ~mi

00
ch~

'(546

IMI.

0U0
0z

o z
WA 0

-- I.

ILW 0 m

u. w 00

00 Ow

0 9 -
cJ o

w w w54

LLI.

Z inr2

oL
IA Q~

o z wu
* .U cc0 *

548

WL)

SU

a- 0WI

0 :c 0

00

um 44 A j 0-l

K.o 000

Z~~~ 0 Zu oU~

am0 P u)' n aI II L
ul-

~-1 0 0

IW6

LU W 549

(A Q CL C

..........................

-. P 7w

I- z

0 U)
Ilz o L

oE U)

Co C)

(I UJ 0w
I-..2

Urn w
Uc, U)S2
Iii

CO >

50

Clm

LUL
wo

55

l mm w LU

.M 2 0 0 w

0>>

O a. 0 o

0 0
t o z)

inz
U) Z gj

I-.~U (I L

wO 0
z0

UlUJU~L

@0 0 0 U

Z m .!R

1--~~ 4..-, J Z

CC I
um. z

I.- 0Zz

oZO

() ZW 0

Urn l q i -v

I-553

Z~ us

Wa

w c

z o
020

I'm~ 0W 0

oL .

0 0
- 5~E n ~,,

II(77z

WWE554

.%

Z ZZ 0

4w 0

w IL

Z~ 00

-L IIwW6

zw

C4

I' 070
7

S~~~ ~~~ f -. %- . .

j LL.

LLumi
CE)

cc-

x J
0~ CE0

0L ZL lI

z ZL
z U3

U) 04

z 0 0c

LUU ccI
zu z 0.

aWz c0 z L .

z P (E)tu ui)0

-j cc 0 0 -U z
wIm 10 <zz L

556

00 0

zz
0 = -U.C

Lu

U. Z U.ZW>

zJ Wz _j)i ZLLI - LS LZW~ I..L
0j 0W U)O

zLuL U c

0 LL U. 0 w F
(I) .2 > C

)O OL W x >Cfl0Ow L
X()0 _

cc j I

0* .- u. -. , c

uJ

0, U) 0 Z
0 0 0 j IL

ccU I- Lwwe

U)W 0
0

IL w
0 0 mi0

0I- U)0

z 0

00 Ir A

0C 0 8

w U) U)0 Z

* 0 0- 0

M j 8

LU
0 X

z 4

CC

o to
JI iaM

~(Jug59

Y 1;IiL VVVW :j6:, J J.T-7 7-T-. .. v 77

a 6

.-.U

.r. u

CCC

z L

C, I-oLL CCt ;

LU

560

dII

dI..

LuU
CCt

-z 0

0 LU

OCo 0 >

I-CL

cc-U) Z~lU

0 LU

I- LU c Uj U U)

........... -.-.......

aL W

(I '-zj

-JL

56

ccn
(j L 0 M

U '

0 uj 0U. zL

c(.

5630

'C' K..

LU

'U

1Lu

0~ Lu

Luz

564

LLI

CC
U) U

6 U
a)) a

0 U

Z U) I.- I
LLIL

_ I- IU)
z LU co

c)00 U)
0 0 U)

w w LUI LUI w0
0 z LL
zm 0~ 0~ 00 za

mU) WU)
Z wJ w co0 Z

C LU w U 0 1.-U Z0
0 4 Z LU M=U)0U

x ILJ 2 J

U) oc Xo ccl.) 0 I

0r 0 0C 0U 0J- D

ul cc g Fow U65

0 0

0 0U
z UJW

0 2.P0
W 0 Zl CL~

I- U .)0 _CL
z Ul _ C,

'-p~C LU 0 0.. - U

o U 0> 00 c P (

Z Z Z <0x 0 LU

0 0~l U) j z. 0

Z< ~ ~ u zL 0I

wz- Z 0 JA cno R V00L

00
u<O J o ~ 0,c

(n 0Z -0oC

UJ i L U J D z I L -c

LLJWL mL >
CL ~ J 0.e CLL,4p<U

: 66 S U

03- -

-It
w U.

0--I

wO
0 J jW w

-it-

0~04

L

0

567

CLL

coJ

CoD

a)6

Stud Star Up

4 Jauary1984 NSIAPropses tud

23 4FJanuary 1984 NSA Proposets Tsudy pNoine

from Industry

*23 March 1984 -Task Group Selection Completed

*20 April -384 -First Meeting of ISTG 84-2

569

71 V-

ISTG 84-2 -Membership

DAVID T. BARRY TAC
RONALD G. CLANTON WESTINGHOUSE
H. M. COURTER SPERRY I-

RON 6. DAIER E-SYSTEMS
JACK DOZIER ARINC
J. R. ELSTON BOEING.
OLEG GOLUBJATNIKOV ,G. E.
BOBBY J. GREER SAT
DOUGLAS S. INGRAM PRC
PETER J.* KENNEDY AT&T
DAYLE MCCLENDON -TRW
JOYCE E. MORTISON SPERRY
TOM PARRISH PRC
RICHARD W, SEILER MCDONNELL DOUGLAS
T. W. SHEFFIELD HARRIS
RICHARD J. SMITH SAI
WAYNE J. SM ITH RCA
ROBERT STOW SINGER
TOM L. WALTERS ROCKWELL INTERNATIONAL
WILLIAM WEDLAKE LMSC
HOWARD YUDKIN BOOZ-ALLEN aHAMILTON
J. BIRCHFIELD BBN

570

z
C~C

0 00

C -)

c 00

- 00 CD

00 -*-C nc
E co p a,,cn

0 c
0 cc c

LL e 1) o

57

.a.

U
LU

0.
Co

U

LU

U

572,

w
-'p.

I-L

C~ww

LU

oO w
LI0 0

Z LL -

0 0 0

573 a

som

E 0J

0 C

0L %. 0 .

0 o1
0 u c o c

cn cn co 0

a: c c r

5

* A2

* -* - -- - - --. ~...*..
c.-

pc
caI

00
L(U

.2 575

--. :

m

a. co 00.

N Eo

-1) cm

-U-
....

".)

co c
(p_.

0 am <c

-- gm I- w'o

(1o --u

-E~

0 a

0. o

co 0 0
(J)CO

D 0 -)c .c

5-6

C
ClCu

0i E
Cc CL

COcc~

0o Cc
C E' 04C

) CM 0 .C
W Cl 0))

W W
'* 0)o

Cu577

C

Oc

57

0ie

CIS-

aw

-6-0

0 co
0

co cn0
0 14J CD~

oE E
0)0

0E c

E E
0o ciE E- ca.s

* -0 z 0 . 0

Wan c %1-.9

now C

U) > 4) ca

0 r C~
.C 0 0

0 a)0

a

0 0 -C

() C i) 0.I

0!
mL E

- 0ut 0

- >a--Q

060ca_ E > ".

gEo 0 8"-
Q 410 0 0
Cc r., .2 'a

0 r0.04.

Cl. 0. ,.12t

0 0Cliol

40. 2 0

b- -

cc 0,0-o

-4)

4))

0))

o.L
CL

Co L. 0

00 C 0.
c. M C3

0 cc. - S0- E~ ~ C .0
a. 0 . (0 0

cr0 0
a. a. a.

a mC 4' 0C
- %

W .580

400

00 aCA

-o -6 E0 C
0. I 0

CD. 0oo C.)I
CC

0O 0 a.
c 0 0 Ea oa.I t:".= f-

0 0 C CL0

4C 0 %0. -O,.V '

0 o 3:22)c

0. 0 0.- L
C C 0 Ex-0V1E 2Sc2 h0 x co co

W 583

COMPUTER SOFTWARE LIFE CYCLE

-- ~~ ---
comopgq "gem

£CtM "Vo wI.val

mcowwmew"gone

PVNCVWN.

@LOCK3 NO" ma
smot-ANN"

584

0)

0
o

CMC

o~

00

g~~c .,= E_,

0 W0 c m ~

co E
"V

0 1;I~ w - 0 r

0 0 c ow W

.+.. o.,-

'W a2 CCE

El E 0aW U&

H" C'-c
ccEW. cc'

0

CE. ..

W585

o e°.o5 o
-".-"

I +

0 0U0 - -6m4.,.

0 0
0 CE o=~

I 20
000

0 0-0~

S mt 0: . o w
0.-a 0o

U -. ,, .. P

0 Z
0 c 0)C. ~(

-o .2 E E
0 (0U% > ~ 0 0

CL ~ r >t> 0cc 0C

0= 0

D',Z.. o E. o. "-' .. "w "'." o.

= 6 00O

0~Z 02C

E E

* 0 0C0

586

I0

.4"

00

aC ca: c-.o.

0

°#, 5 ,

587 ::'

--

.2 ..
% a

. I C °1)0
-"-.-. - -,.-. .. -.- : . . "5". 0 " -'-'-' :.'.-.'-%l-'.. 8.'. % -"".% -""." -: 2.% % '''".." ""

c*

Lqm.

E cc.- ¢ € ..,
(U0

Cc () C0C~i 00E

coE ¢ E o1 ,c..
Lm~ C IO

0 €/) C -- .
- 5 0 0

• .. . 4"'%

588 ":-

I'... %

........ ...

.-.
0 L

C o W8 ,- ,-,
'~4 0 ca)

-r-

CM c- Cc C (

0 . O6.C C

0 0.. 00 0

C'

. ..-.- %1.. 0

(0 (D0

E- c1 c .0'co

co 0

"" ~589 "-'

,U 4-

...-.-..-.....,.......,..,,-.E.. .-, .2,...;:.". o ...9, .. 0. , -,. . .-: . .

590.

M"''< A.'IC -. - aj - -I--

-cc

cc .

a Z' -

I- 0 0
4..L - g

> Cc 0

C- C vi: C0

00
CCC0 0

~ECL 0 0

C4 :0 m~ C
cc 0:

= 0..(a

0 Eu ~0m ~

> ca

LA-EC W" 0 a- c

002
1,

*

* 0 0 -

591

c y

%-

000

.59

(0.5.5.5

0C

0 CC

00.
1..O0

0.

o C13

Cc

CD590

C13

0we

cc

0

o.°~c (D '.:
• ,...,

OE

sc

00

594

• "2 ..?,

4>

c 0

I'-

C
C o C

.0 0 C4 .

E _L

Em E 0
0 0 Co E

- 0

CID 0 0
'-S 0

00 E0 ~ 2~iCA00 = rco

CL t---:0cc = cc 0

0) 0 0

595

cal~

000 9h

• -- C 0

cc 0
.2 0)0 0 0

.out
CO) 0)

E 0
C Cc

02c

-a)0 m-0
Cc C

-- V 0 -..:)0 00

."c) 0

0L 4.0 AS0 0 0a

- m 006..-
Cm

596

. .*

C 2

0 0

o~ >..

> ~00

00 .0 0cc

cis 0 Ef >
I= 00

00 V
0 Oo 000

0 0 ,

cc w

L6

,00.59>

Ada* Technology Objectives and Plans (ATOP)

Norman S. Nise
Rockwell International
12214 Lakewood Blvd.

Downey, California 90241

Objective The space industry needs a total
management plan that will encompass the

To develop a uniform management plan development and use of both tools and appli-
that can be applied, industry wide, to the cations software.
development of Ada reusable packages. Objectives and Plans

Approach
In order to reduce the costs and

The management plan will include the increase the quality of software to be
following plans: developed on the Rockwell Operational

Software Engineering System (ROSES),
A. Reusable software plan Rockwell International wants to use reusable ,
B. Configuration management plan Ada packages in the development of that
C. Design and development plan software.
D. Unit testing plan
E. Evaluation and validation plan (E & V) To be accepted industry wide, the reus-
F. Warehousing plan able software packages must be developed
G. Programming standards and warehoused under standardized manage-
H. Coordination plan ment procedures that are accepted industry.

sp 0.4v Rockwell International wants to develop
Justification these standard management plans which are

now detailed:
There is a need for a management plan

to unify the development of Ada reusable esS".el
packages for tools and applications software " Provide management approach to all
for space. plans and efforts

Reusable software represents a capital " Set forth the technical approach
expenditure that generates reduced software
development costs in the future. This sav- * Set forth schedules and work breakdown
ings is realized through decreased time in. Configuration Management Plan " -
future software development and decreased C u o a t
time for personnel training. A standard Develop Ada software configuration
management plan that is adopted industry management methods to yield a
wide is required for the development of reus- degree of control and tracking
able packages that themselves are accepted during design, development. unit
and used industry wide. testing, evaluation and verification,

and upgrade phases for the
Current effort, mainly with DOD, is reusable software package.

directed toward the development of tools for
use with the APSE. Also, some studies are * The software configuration management
being done to determine the commonality plan should be automatic and
between missile systems in order to set the transparent and thus a key tool for •: *,
bounds for future development of reusable the APSE.
applications software but holes exist. espe- Dei" and D vl p e t P a
cially in the management of reusable applica-
tions software. " Find general areas of commonality

599 'l

.4

between software used in aerospace differences in instruction execution
applications, time

Determine functional areas within Study operation order dependency
the general areas that can serve ... Intermediate values out of bounds
serve as a basis for reusable software. because of changes in operation

operation order
For each functional area, determine the ... Functions causing side effects by
level of abstraction that would best modifying non-local variables that
serve the purpose of a reusable package. are again used in the function or

another expression
*Determine objects and programs that ... Combination order of library units

would be available to the programmer that use other packages
using the reusable package. ... Elaboration order of compilation

units that use other units .4
Determine what objects and associated ... Real-time tasking problems due to
operations should be declared dependency on order of
private, processing jobs in a queue

... Real-time tasking problems due to
" Determine whether the unit of changes in the order in which

reusable software should be tasks are called
designed as a generic package.

Study Implementation dependency
Determine approach to exception ... The effects of the program changes
handling, depending whether parameters are
... External or internal to the passed or copied

package ... Requirements imposed by the -

... Methods to improve reusability environment tasking on program
parameters

* Investigate various software ... The effects of pragmas (which are

generator systems that take mainly supported by the

abstract programs and generate code. implementation) on reusability .:,,
... The effect of interrupts upon

" Study effects of target machine reusability
dependency. ... Effect of clauses that are

Number of bits available for number implementation oriented (eg.
types address clause)

... Available accuracy

... Available character set Other

... Definition of control characters ... Effects of machine code insertion
... Differences in exceeding bounds or reusability
... Differences on relying on equality of ... Effects of interfacing with other

floating point numbers for languages on reusability
conditional responses

... Differences in dynamic allocation Develop a test plan
and deallocation effects and timing ... Describes scope, approach,
effects and timing (eg. trying to resources, scheduling of test
access code after deallocation has activities
been issued) ... Identifies test items, features to
Where should machine dependent be tested, task, personnel
statements be placed in the
package and what documentation is Develop test design specification
required ... Details the test approach and.'

... Effect on handling real-time tasking identifies associated tests
timing and synchronization because of

600 AL

.'

" Develop test case specification a. Allowable ranges of values for
... Specify inputs, predicted results, objects used by the package ".

.'. ,.conditions b. Expected values of objects .
." ,,..."calculated by the package

" Develop test procedure specification c. Units of measure
... Describe sequence of actions to d. Accuracy requirements

execute a test e. Description of algorithms
f. Numerical conventions including

Develp tes logsignificant digits rounding,
Record of details about execution truncation, etc. 4
of tests g. Exception handling

h. Safety handling
Develop test incident report
... reports on any event requiring Develop standardized presentation

further investigation of documentation
a. Plow '":

Develop test summary report b. Nasui-Shneidermangrams

... Summarizes test activities and results e. Data structure before and C
after picture'.,

Evaluation and Validation Plan (as per
Wright-Patterson or NASA JSC) * Develop tools for automatic reusable

package selection, linking
Develop evaluation and validation and presentation of documentation
requirements

Methods, practices, standards, " Develop methods to obtain and use
etc., that drive E&V reusable software
development plans P SdU'S Dvel4pmant P

• Develop evaluation and validation criteria
... Specify hurdles that reusable Develop programming standards

software packages must pass that will be used during development
and modification of reusable packages

* Develop tools to provide standardization for
Software required to carry out the analysis, traceability, maintain
E&V function ability, and quality assurance

• Develop procedures * Develop tools for auditing reusable
... Methods of E&V to ensure software packages against the programming

meets criteria standards

Develop documentation " Perform audits of the code against
To ensure publication of methods, the programming standards
practices, tracking " Develop documentation to describe

WAREHOUSING PLAN standards and audit procedures

Develop methods of cataloging and
indexing for the library of *Provide for information exchange
reusable software packages within the private community

Develop standardized supporting Provide for information exchange
documentation for reusable with DoD
packages that will describe the
function. importable objects, Keep up to date reference library
exportable objects, side effects, on all activity community wide
and operating including: dealing with reusable packages

601
? r

q .4, 'e 'r*

Promote the use of developed (3) Final documentation will be available
reusable packages after the review.

Review and Reprting (4) Final documents will be updated once a
year based upon experience with the

(1) Weekly reports will be available under development of reusable software.the normal procedures followed by
systems/software group. (5) Monthly reports describing any sugges-

(2) Preliminary documents describing each tions or problems based upon the use of
o2) teminaboe domente ps ill eh the management system will be issuedof the above mentioned plans will be after the first version of each plan hs "

available for review. The exact review been approved.
procedure will be determined and will
exist over a period of 3 months.

6'

4°- .*

S...'

h r:.

602.'o

..*.*.°*".S

Norman S. Nise 'B

1444 Sunview Drive
Orange, California 9266S

EXPERIENCE

SOFTWARE ENGINEER, ROCKWELL INTERNATIONAL from June 1980 to present.
Implemented the Space Shuttle Backup Flight System (BFS) programming standards including
the development of auditing techniques and procedures. Performed audits of the Shuttle BFS
code against the programming standards.

Developed the programming standards for the Rockwell Operational Software Engineering
System (ROSES).

Initiated and implemented ROSES Ada Technology Objectives and Plans (ATOP) for
NASA in Reusable Software Management. Gave various presentations on the subject.

Instrumental in assisting the Software Productivity Consortium's (SPC) designing and
.- implementing a Reusable Software project. SPC is a consortium of 11 major aerospace com-
. panies. The objective of SPC is to reduce software development costs for the aerospace indus-

try.

ENGINEER, HUGHES AIRCRAFT CO. from June 1961 to May 1970. Performed

technical feasibility studies concerning the phase stabilization of traveling wave tube phase-
shifters, and the application of state-space techniques to system design.

Performed analysis in the areas of automatic detection techniques, moving target indicator
digital cancelers, effect of noise in sampled-data loops, missile acceleration and data rate

. requirements, and miss distance.

Performed analog computer simulations of missile control loops.
Developed digital simulations of target engagements by performing subsystem modeling.

PROFESSOR, CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA, CA.
from September 1963 to present. Full Professor since 1973. Taught courses in computer archi-
tecture, microcomputers, control systems including digital and nonlinear, network theory, com-
munication theory, electronics, field theory, and analog computers.

603

16C

......... * .

* . * . % * .'•'.... . . .

.. . . **., ..-=***-"_.-' -. -. .- . -.

Reusable Software Management

I E> 0 INTRODUCTION

0 SUGGESTED APPROACH

O ACCOMPLISHMENTS & PLANNING

0. REFERENCES

II

604

INTRODUMTON

Purpose of the Briefing

*TO STATE THE NEED FOR REUSABLE SOFTWARE

*TO DEFINE THE PROBLEM OF THE DEVELOPMENT OF REUSABLE
SOFTWARE

*TO SUGGEST AVENUES OF APPROACH TO THE SOLUTION OF THE
PROBLEM

*TO SUMMARIZE STEPS TAKEN BY ROCKWELL INTERNATIONAL

SRockwell
Inter national 6 SM

605

INTRODUCTION

Problem :

* SOFTWARE COSTS WILL BE 5 TIMES THAT OF HARDWARE .
BY 1990

- REUSABLE SOFTWARE HAS NOT BEEN USED IN THE PAST TO
SOLVE THE PROBLEM BECAUSE OF:

* LACK OF A UNIVERSALLY ACCEPTED PROGRAMMING LANGUAGE THAT
LENT ITSELF TO DESIGN CRITERIA OF REUSABLE MODULES

* LACK OF ACCEPTANCE THAT THE IDEA OF REUSABLE SOFTWARE
COULD WORK

" LACK OF STANDARDIZATION - DEFINITIONS, DESIGN APPROACHES,
DOCUMENTATION, LIBRARY ACCESS METHODS

* PROPRIETARY INTERESTS RESULTING IN LACK OF COOPERATION
AMONG INDUSTRY

3

" Rockwell
International 3666V16414A

606

606

ft ~ .. .Ph-*~.2 -- - F. - ..- .;J sX. -k S. ... -

INTRODUCTION

Impacts

*THE SINGLE LANGUAGE PROBLEM HAS NOW BEEN SOLVED
WITH THE DEVELOPMENT OF Ada'

* COMMUNITY ACCEPTANCE OF THE NEED FOR REUSABLE
SOFTWARE IS EVIDENCED BY:

* SOFTWARE PRODUCTIVITY CONSORTIUM (SPC)

*NAVY'S SYMPOSIUM ON REUSABLE SOFTWARE
(REUSABLE SOFTWARE IMPLEMENTATION PROGRAM) V

* AIR FORCE COMMON Ada MISSILE PACKAGE
(CAMP) PROJECT

* ITT WORKSHOP ON REUSABILITY IN SEPTEMBER 1983

a WORK DONE BY SUCH PEOPLE AS PARNAS TO LAY
GROUNDWORK FOR DESIGN CRITERIA FOR REUSABLE
MODULES

*Ada IS A REGISTERED TRADEMARK OF THE DEPARTMENT OF DEFENSE (AJPO)
4L' Rockwell

Internationei 35SSVIG41418

607

INTRODUCTION

Definition of Reusable Software

3.

" SOFTWARE PACKAGES THAT ARE REUSED IN DIFFERENT
APPLICATIONS (WITH LITTLE OR NO MODIFICATIONS)

*SOFTWARE PACKAGES THAT ARE REUSED IN MODIFIED
VERSIONS. OF THE SAME SOFTWARE PROGRAM

*SOFTWARE PACKAGES INCLUDES SPECIFICATIONS,
DESIGNS, DATA, CODE, TEST CASES, AND DOCUMENTATION -

* SOFTWARE THAT CAN BE USED ON DIFFERENT MACHINES
(PORTABILITY)

.

" 7 -

Rockwell -
International 359SVIS414,

".77

608

-..---

INTRODUCTION

Examples

1. PREDEFINED PACKAGES
* BOOLEAN OPERATIONS

* LOGIC OPERATIONS

* EQUALITIES- INEQUALITIES

* ASCII CHARACTER DEFINITIONS

* STRING OPERATIONS

* CALENDAR

* 110 OPERATIONS

609

INTRODUCTION

Examples (Cont)

2. 'MATH PACKAGE H
* VECTOR-MATRIX OPERATIONS (MXN, M +N,

INVERSION, EIGENVALUES, ETC.)
9 ARITHMETIC OPERATIONS (MIDVAL, SIGN, SIGNUM,

ETC.)
* ARRAY OPERATIONS (MAX(X), SUM(X), ETC.)

*~ OCHARACTER OPERATIONS (LENGTH (C), ETC.)
* CURVE FITTING & DATA SMOOTHING
eSTATISTICS

* FUNCTION APPROXIMATION & MINIMIZATION
TECHNIQUES

* *SOLUTION OF EQUATIONS
*TRIGONOMETRY

* CALCULUS & DIFFERENTIAL EQUATIONS

7
SRockwell
International 04SSVI S4124

610

S .-.

.%

INTRODUCTION

Examples (Cont)

3. NAVIGATION & CONTROL
" COORDINATE TRANSFORMATIONS *COVARIANCE MATRIX
* HEIGHT-ABOVE-REFERENCE PROPAGATION

ELLIPSOID * INTEGRATION OF STATE
" GRAVITY GRADIENT EQUATIONS

" RELATIVE VELOCITY & e GRAVITATIONAL & DRAG
POSITION CALCULATIONS ACCELERATION COMPUTATIONS

*COMPUTATION OF APOGEE& EARTH'S GRAVITATIONAL
PERIGEE HEIGHT ATTRACTION MODEL

* EARTH'S CENTRAL FORCE * KALMAN FILTER
OF ATTRACTION * CONSTANTS (EARTH RATE,

* STATE VECTOR PROPAGATION EARTH DIAMETER, ETC.)
*DIGITAL FILTERS

1- TACAN RANGE & BEARING

*POSITION, VELOCITY,
ACCELERATION PREDICTION

SRockwell
ti International 84SSV$4122

611

,..

INTRODUCTION

Examples (Cont)

4. SYSTEMS PACKAGES
* TIME RESPONSE
* FREQUENCY RESPONSE
* STABILITY
* FEEDBACK CONTROL SYSTEM AIDS

5. TOOLS
*APSE

6. OTHER

RockwegSInternatdonal 85 V154W2

612

INTRODUCTION

Characteristics of Reusable Software

* REUSABLE SOFTWARE IS INITIALLY CAPITAL-INTENSIVE
o LARGE CAPITAL OUTLAY TO DEVELOP FOLLOWED BY REDUCED COSTS

& INCREASED PROFITS
* REPRESENTS A TANGIBLE ASSET THAT INCREASES PRODUCTIVITY *

* REUSABLE SOFTWARE AVOIDS DUPLICATION
e WE DO NOT HAVE TO "REINVENT THE WHEEL" '.-

* REUSABLE SOFTWARE CAN BE REUSED WITH LITTLE OR NO
MODIFICATIONS

* INCREASED SOFTWARE QUALITY

*ADVANTAGES OF REUSABLE SOFTWARE DESIGN AND
DEVELOPMENT

* STANDARD APPROACHES
9 WELL UNDERSTOOD
o MODIFICATIONS MINIMIZED '.9
e VERIFICATION MINIMIZED A
* ANALYSIS MINIMIZED

* DECREASED TIME FOR PERSONNEL TRAINING
o DECREASED LEARNING CURVES

J Rockwell 10
International BdSvI S4094

613

K!

... **.-*......**- ... ,

INTRODUMTON

Attributes of Reusable Software

* DESIRED LEVEL OF ABSTRACTION

* INFORMATION HIDING

* MODULARITY & LOCALIZATION

* MINIMIZATION & PROTECTION OF INTERFACES

* * UNIFORMITY

SRockwell
lntrnabonai SSVS0

614

-7F

INTRODUCTION

ADA* for Reusable Software '

ADA PROVIDES THE ATTRIBUTES OF REUSABLE SOFTWARE via
THE FOLLOWING RESOURCES

* PACKAGES

*DECLARATIONS

* RELATED PROGRAM UNITS

* ABSTRACT DATA TYPES

*ABSTRACT STATE MACHINES

* eGENERIC PACKAGES

e PRIVATE TYPES

* STRONG TYPING

* MANAGING NAME SPACE

'ADA IS A REGISTERED TRADEMARK OF THE DEPARTMENT OF DEFENSE (AJPO)

SRockwell

0% International

615

r.

Keys to Problem Solution

*USE A SINGLE LANGUAGE - ADA a.

*PROVIDE FOR DESIGN CRITERIA THAT ENSURE REUSABILITY

*PROVIDE FOR DESIGN, DEVELOPMENT & TESTING UNDER
CONFIGURATION CONTROL & MANAGEMENT

0PROVIDE FOR A WAREHOUSING SCHEME FOR POOLING &
DISTRIBUTING REUSABLE SOFTWARE

* * PROVIDE FOR INFORMATION EXCHANGE, EDUCATION,
COORDINATION

1kRockwell
International2SasSD9

616 a.

Reusable....................

"A

0~~~ ~ ~~ ACOPLSMNT LANN

0 INTRDUCTIO

SRockwell asimu
International

617

0 cc
------ --J-

o

LU.

Sz

c P

0 4cw

I-

,-. I-1e -'

.Z.-..

Co 0

0 0
LU 0a

tas Q z

Icf

-, .

UL

cc 0U
cc a

-618

SUGGESTED APPROACH

Reusable Software Plan

S.'REUSABLESOTAEPN

FORFGUATO MANATIOENIDESIGN &DEVELOP IFNIURTO AA ~ O ii
REUSABILITY WRMUId COODNTo

PROGRAMIS
STANDARDSI

UNIT EVLUATION&
~PMNT TESTING VAA T IOJ

EI~Rockwell
international %SSJ*9

619

- - SUGGESTED APPROACH

Reusale Sftwar Pla

*PROIDE ANAGMENTAPPRACH O.A.

*SET FRSUGGESTEDHIA APPROACH

* SET FORTH THEDUE TEHIA APROAC

BREAKDOWN

SRockwell 5SVSU

620

SUGGESTED APPROACH

* Configuration Management Plan

*DEVELOP SOFTWARE CONFIGURATION MANAGEMENT
METHODS TO YIELD A DEGREE OF CONTROL & TRACKING
DURING DESIGN, DEVELOPMENT, UNIT TESTING, EVALUATION
& VALIDATION, & UPGRADE PHASES FOR THE REUSABLE
SOFTWARE PACKAGE

*THE SOFTWARE CONFIGURATION MANAGEMENT PLAN
SHOULD BE AUTOMATIC & TRANSPARENT & THUS A KEY
TOOL FOR THE APSE

SRock~well
International 36SSV1 541111

6:11

* - "t %. -- ' .- ", A . - - ; : ; -' . " * . a 4 - - r

SUGGESTED APPROACH

Design and Development Plan

SET GUIDELINES FOR DETERMINING:
* GENERAL AREAS OF COMMONALITY BETWEEN

SOFTWARE USED IN AEROSPACE APPLICATIONS
* FUNCTIONAL AREAS WITHIN THE GENERAL AREAS THAT

CAN SERVE AS A BASIS FOR REUSABLE SOFTWARE
* LEVEL OF ABSTRACTION THAT WOULD BEST SERVE THE

PURPOSE OF A REUSABLE PACKAGE
* OBJECTS & PROGRAMS THAT WOULD BE AVAILABLE TO

THE PROGRAMMER USING THE REUSABLE PACKAGE (
* WHAT OBJECTS & ASSOCIATED OPERATIONS SHOULD BE

DECLARED PRIVATE
* WHETHER THE UNIT OF REUSABLE SOFTWARE SHOULD

BE DESIGNED AS A GENERIC PACKAGE
* APPROACH TO EXCEPTION HANDLING

E kRokwell
International 84SSY 154112

622

............ %-..,

SUGGESTED APPROACH

Design and Development Plan (Cont)

ALSO:
* INVESTIGATE VARIOUS SOFTWARE GENERATOR

SYSTEMS THAT TAKE ABSTRACT PROGRAMS &
GENERATE CODE

* STUDY EFFECTS OF TARGET MACHINE DEPENDENCY
* STUDY OPERATION ORDER DEPENDENCY I-

C* STUDY IMPLEMENTATION DEPENDENCY
*OTHER

20

0D Itmtoa SSV54IJ 3

623

-.- . .. - . - ..- -A. . - - - -- • •

SUGGESTED APPROACH

Programming Standards
Development Plan

* DEVELOP PROGRAMMING STANDARDS THAT WILL BE USED
DURING DEVELOPMENT & MODIFICATION OF REUSABLE
PACKAGES TO PROVIDE-

* STANDARDIZATION
* TRACEABILITY
* MAINTAINABIUTY
* QUALITY

* DEVELOP TOOLS FOR AUDITING REUSABLE PACKAGES
AGAINST THE PROGRAMMING STANDARDS

" PERFORM AUDITS OF THE CODE AGAINST THE
PROGRAMMING STANDARDS

" DEVELOP DOCUMENTATION TO DESCRIBE STANDARDS &
AUDIT PROCEDURES

.' 21

0 Rockwell
International 84SSVI SdJ7

624

' . 624 -'

." -%

.- t o

% 0 ir

SUGGESTED APPROACH L.
Unit Testing Plan

DEVELOP:

e*ATEST PLAN

e TEST DESIGN SPECIFICATION
* TEST CASE SPECIFICATION
* TEST PROCEDURE SPECIFICATION L
*TEST LOG
*TEST INCIDENT REPORT
*TEST SUMMARY REPORT

EkRockwell
Q International 84SS4114

625

7.r: *.... .7. -f-L if I .,

SUGGESTED APPROACH

Evaluation and Validation Plan*

DEVELOP:

* E&V REQUIREMENTS

0 E&V CRITERIA

*TOOLS2

* PROCEDURES

*DOCUMENTATION

'AS PER WPAFB, NASA JSC, NAL, DARPA OR STARS

23EIR oCkwefl
International *SSVI54US5

626

.. ..- :~. ...,'"

SUGGESTED APPROACH

* ~Warehousing Plan

*DEVELOP METHODS & TOOLS FOR CATALOGING & INDEXING '-a

THE LIBRARY OF REUSABLE SOFTWARE PACKAGES

* DEVELOP STANDARDIZED SUPPORTING DOCUMENTATION
FOR REUSABLE PACKAGES THAT WILL DESCRIBE THE
FUNCTION, IMPORTABLE OBJECTS, EXPORTABLE OBJECTS,
SIDE EFFECTS, & OPERATIONS

*DEVELOP STANDARDIZED PRESENTATION OF
DOCUMENTATION

* DEVELOP TOOLS FOR AUTOMATIC REUSABLE PACKAGE
SELECTION, LOADING, LINKING, & PRESENTATION OF
DOCUMENTATION

" *DEVELOP METHODS TO OBTAIN & USE REUSABLE SOFTWARE

* STUDY POSSIBILITY OF SETTING UP CLASS HIERARCHIES

* DEVELOP INSTRUCTIONAL PROGRAMS TO AID IN THE USE OF
THE LIBRARY

* DEVELOP TECHNIQUES TO SET UP & ENFORCE ACCESS
RIGHTS

0 Rockwell

International 84SSVIS$4d16 24

627
"-" "i.-

°. ,i

cc

SUGGESTED APPROACH

Coordination Plan

* PROVIDE FOR INFORMATION EXCHANGE
WITHIN THE PRIVATE COMMUNITY

* PROVIDE FOR INFORMATION EXCHANGE
WITH DOD, NASA, & OTHER GOVERNMENT
AGENCIES

*KEEP UP TO DATE REFERENCE LIBRARY ON
ALL ACTIVITY COMMUNITY-WIDE DEALING
WITH REUSABLE SOFTWARE

is PROMOTE THE USE OF DEVELOPED REUSABLE
PACKAGES

Rockwell
SInternational SVS4I

628

PL.

Reusable Software Management

S C INTRODUCTION

0 SUGGESTED APPROACH

E0 ACCOMPLISHMENTS & PLANNING

0 REFERENCES

E ~Rockwefll38

629

°- .. ,

ACCOMPULIIMENTSWhat We Have Accomplished

IY 1984

* INITIAL DRAFT OF SOFTWARE CONFIGURATION MANAGEMENT PLAN
RELEASED FOR REVIEW

* INITIAL DRAFT OF PROGRAMMING STANDARDS RELEASED FOR REVIEW

FY 1985
* BEGAN FORMULATION OF Ads REUSABLE PROGRAMMING STANDARDS

* AWARDED REUSABLE SOFTWARE ATOP OUT OF NASAIJSC

* DISTRIBUTED STANDARDS TO OTHER ROCKWELL DIVISIONS

* AUTONETICS

* ROCKETDYNE

* COLLINS - SANTA ANA

* COLLINS - CEDAR RAPIDS

Rockwell
'" International :savg4&2

630

ACCOMPUSHMENTS

Ada* Training Accomplishments

eo R.,McKAY'S PRESENTATION TO UPPER MANAGEMENT

0 SOFTECH ANALYSIS OF ROSES Ada TRAINING REQUIREMENTSp

* ACADEMIC ACCREDITATION OF IN-HOUSE Ada TRAINING PROGRAM APPROVED
* CAL POLY POMONA TO PRESENT SOFTWARE ENGINEERING IN Ada IN

REAL-TIME VIDEO BY Ada EXPERTS FROM ANYWHERE IN U.S.

* TWO "INTRODUCTION TO Ada" CLASSES (OVER 20 GRADUATES)

S100K Ada PRESENTATION COSTS (FY 1985) APPROVED

e NYU Ada IN-HOUSE

* DEC Ada FIELD TEST SITE

* THREE SOFTWARE ENGINEERS ATTEND TELESOFT Ada WORKSHOP

*Ads IS A REGISTERED TRADEMARK OF THE UNITED STATES DEPARTMENT OF DEFENSE (AJPO)

libRockwell

|yternadonal I4OU

631

. .. .

"-v

ACCOMPUSI4MENTS

Rockwell International Reusable
* Software Contract

*SPACE TRANSPORTATION SYSTEMS DIVISION (STSD) DEVELOPED
* SPACE SHUTTLE APPLICATION SOFTWARE UNDER MARTINrn MARIETTA CORPORATION FOR THE DEPARTMENT OF THE AIR

FORCE - HO DIVISION (AFSD)

*DEVELOPED 15 COMPUTER PROGRAM CONFIGURATION ITEMS TO CHECKOUT
LAUNCH SPACE SHUTTLE VEHICLES AT THE VANDENBERG LAUNCH &LANDING

SITE (VLS)
*REUSED EXISTING KENNEDY SPACE CENTER SOFTWARE TAILORED TO MEET
VLS UNIQUE REQUIREMENTS & HARDWARE DIFFERENCES

* SAMPLE PROGRAM PACKAGE INCLUDED:

SYSTEM MANAGER
*OPS MANAGERS

e SCHEDULERS
e DISPLAYS
* SEQUENCERS
* TASK
* COMPONENT

Ri~Iockwell
International ~'

632

PLANNING

Reusable Software Projects

1. CONTINUE REVIEWING REUSABLE SOFTWARE LITERATURE

2. CONTINUE TO WRITE Ada REUSABLE STANDARDS

3. DISTRIBUTE REUSABLE STANDARDS TO OTHER ROCKWELL DIVISIONS

4. CONTINUE OBTAINING REUSABLE PACKAGES

S. TEST REUSABLE PACKAGES AGAINST STANDARDS

6. LOAD ACCEPTABLE PACKAGES INTO ROSES

7. TEACH REUSABLE SOFTWARE PRINCIPLES & METHODS

8. MEASURE REUSABLE SOFTWARE PACKAGE USE

9. CRITIQUE TECHNICAL APPROACH

(NEED FOR DEVELOPMENT OF LIBRARY ACCESS TOOL)
(NEED FOR PROOF OF CONCEPT APPROACH)

Q Rockwell

International 38MVw8400

633

Y.2.

ROSES

Ada Reusable Software Package System
(Evolutionary)

Ada ROJCTSUSERS/I COMMUNICATORS

Ada * SISTER DIVISIONS
EDUCATION DESNIGN EUAL
PROGRAM WAREHOUSE UNVSIYO

DESIGN METHODS LI . VRABUY HOUSTON
c

SOFTWARE
PRODUCTIVITY rj
CONSORTIUM

VAL -

.

%

Reusable Software Management

0 INTRODUCTION

C SUGGESTED APPROACH

C ACCOMPLISHMENTS & PLANNING

0~ REFERENCES

E Rockwell
OInternational 3.aaIS Sei A-4L

635

References
1. P. C. Clements, R. Alan Parker, David L. Parnies & John Shore, "A Standard Organization for Specifying Abstract Interfaces,"

Naval Research Laboratory, June 14, 1984

2. "Reference Manual for the AnA Programming Language," MIL-STD 1315A, 22 Jan 1983

3. Booch, G., "Software Engineering With AoA," The Benjamiln/Cumming Co., 1983

4. Nissan & Wallis, "Portabilit & Style In AoA," Cambridge University Press, 1984 r

5. "Reusable Software," Electrical Design News, February 3, 1983

6. "Common Aua Missile Packages (CAMP),' Rip, Egmn AFB. March 21. 1984

7. Bruno Wite, "Checklist for Aa Math Support Priorities." ACM AoA Utters, March. April 19814

8. "Evaluation & Valildation Plan," Version 1.0. WrIght-Pattuersn AFB, 30 November 1983

9. Wagner. "Capital-lntenslve Software Technology," IEEE Software, July 1984

1D. "Proceedings of the Workshop on Reusability In Programming," September 7-9. 1983, ITT

11. "Strategy for a Software Initiathiv.' Department of Defense, 1 October 1982, Appendix II11.

12. McDonald, Jordan, & Schaar, "Concept Paper for the Development of a DOD ADA Software Engineering Education and Training
Plan," Institute for Defense Analyses, boA Memorandum Report M-7, November, 1984

13. Freeman, P., "Reusable Software Engineering: Concepts and Research Directions," Proceedings of the Workshop en Reusailitly
in Programming, 1983

14. Parnall, 0., "Designing Software for Ease of Extension and Contraction," IEEE Transactions on Software Engineering. March 1979

15. Parnas, D., "Do the Criteria to Be Used In Decomposing Systems Into Modules," Communications of the ACM. December. 1972

@Rockwell
International 25SSV150697

636

WORKSHOP ON REUSABLE COMPONENTS

OF APPLICATION PROGRAMS

A. FredericK Rosene

Communication Systems Division
GTE Government Systems Corp

Needham Streets, MA 02194-9123

Abstract

The attached paper. The STEP System, is submitted to support GTE's Communication Systems Division
participation in the Workshop on Reusable Components of Application Software. STEP (Structured Tech-
niques for Engineering Projects) is an integrated software development environment based on a methodology
and software design architecture that expedites the development of reusable design and code. The paper on
STEP addresses many of the issues and questions included in your CBD request for participation. A cross-
reference between the issues and the paper is given below.

1. Specifications/Design 4. Library Experience

STEP methodology is summarized in STEP is designed around a
section 1. the STEP Analyze command configuration backbone (pages 8 and 9). In
enforces standards described on page 6. addition all commands rights (Table 1) and

subcommands rights may be granted or
2. Reusable Component Definitions denied to a user. Nodes (pages 3 and 4) may

The database description on pages 3 and be designated as archive nodes and hence
4 describes how and what documentation provides users with on-line access to existing
STEP maintains. The association of docu- code that is in the form acceptable to STEP.
mentation with components is inherent in the All source and documentation of a com-
data structures as well as associations among ponent may be transferred from an archive to
components (see the Allocate command on a development node by executing a single
page 5). When software decomposition is append command.
defined to STEP, the testing documentation 5. Automated Parts Composition
components are created by STEP so there is
always a known association between design The Compile Command (page 5)
and test documentation. As pointed out on selects components and builds load file
page 6 the Configuration Management back- releases. It insures that a consistent and
bone of STEP allows for many revisions of a complete set of components are available for
component and insures the user is aware of compiling. The selection of component revi-
and does not violate the framework within sions which is also part of this process is
which he or she is working. automatic and controlled by predefining the
3. Validation of Software Components selection rules to be applied (page 9).

STEP relies heavily on the Analyze 6. Logistics of Reuse
Command (page 5) and the standards it Our experience using STEP. and reus-
enforces (page 6) to insure structured, syn- ing the generic architecture on several pro-
tactically correct code that follows the jects has been positive (page 12). Software
specified high level design (pages 9 - 11). personnel may be moved among projects. ".

Testing time has significantly decreased using new personnel get up to speed quickly. and
STEP (page 12) and resulting code has redesign of executives and creation of new
proved to be flexible and maintainable, untested software architectures avoided.

rb-

637

r

7. Encouraging Deposits We feel our experience in developing

The Management Policy and Procedures and using STEP (8 years) and the generic -

require the use of STEP and its associated STEP architecture (12 years) on which it is
rEPurhitetue. o s ecific inscesites based will allow us to make a valuable contri-STEP Architecture. No specific incentives bution to your workshop.

are in place to encourage deposit of reuse. bi t u k

STEP is written in PASCAL and runs
8. ADA Experience on DEC20-TOPS20, VAX-VMS, and IBM-

MVS. Limited data rights are given to our

Ada support on STEP is almost corn- customers who wish to maintain their source

plete. A major concern to us is the and documentation on STEP. Other arrange-

inefficiency of Ada tasking. The generic exe- ments are negotiable. STEP was developed

cutive is being reprogrammed in Ada. both on GTE Corporate and on IR&D funds.

THE STEP SYSTEM

1.0 Introduction The STEP methodology is a set of design
" In 1976 GTE's Communication Systems steps that results in a controlled, structured

Division began creating a software develop- approach to software system development.
ment environment called "Phoenix". A few Figure I shows the phases into which the sys-

years later, the project obtained corporate ter life cycle is divided.
support and the name was changed to "STEP" A measurable result, called a milestone,
(Structured Techniques for Engineering Pro- marks the end of each phase. At each mile-
jects). Today CSD policy calls for the STEP stone someone in authority must certify that
system to be used in all major software the project is ready to advance to the next
development programs in the division. STEP phase. The key features of the methodology
is continually being improved and expanded are:
in response to user feedback and software - a i"e
engineering progress. This paper describes - a standardized software architecture for

* STEP from the user's perspective and from a projects
design perspective. In addition, it reviews - enforcement of standards throughout the
our experience in using STEP for over six development
years. - documentation that is concurrent with

Section 2 gives an overview of STEP. Sec- development
- top-down structured programming for all

tion 3 describes the architectural framework development
on which the STEP environment is based. - periodic reviews for early detection and
Section 4 describes the structure of the data- correction of errors.
base, the core system and the tools of the
STEP system. Finally, Section 5 describes The STEP system combines human pro-
some reactions to and experience in using cedures with software tools, a database and
STEP. an interactive computer in order to structure:

2.0 Overview software engineering

STEP is an automated software development software quality assurance
environment?1O which helps produce reli- - configuration control
able software; it is both a life-cycle methodol- - project management.
ogy and an integrated system of computer
programs which automate, control, support STEP is founded on the theory that a large
and enforce the methodology. It meets most software project is a group effort and thus
of the requirements of an Ada environment information must be accessible to everyone. .
as described in the STONEMAN Progress is recognized only when it is %
document?20. reflected in the project's database, and

638

.-..,,... ,...'.... ; .-... _ .- _._

AIIl

Pzu&

ma)

j=j
gal C,

la 0'.0

639

a)7

OFWATM
* bm

04N

Figure 2
STEP Environment'

Figure 3
STEP Architecture

640

reviews and audits are performed only on before the detailed design is begun(4), and

database contents, information that can be used to improve the
"3.0 Software Arhitecture development process on future projects, is

easily kept in the database. Furthermore, it
The heart of the system is an architectural is possible to produce performance data down
framework(3,4) which is designed on time- to the level of each user. The only cost is
sharing principles. That is, the program is efficiency: The more data collected, the
partitioned into subprograms. each of which more processing required per user action.
has a control interface with an executive 4.0 Structure
which schedules its use.
The architectural template, shown in Figure Figure 4 shows the three principal features of
2, is a generalization of the classical time- the STEP system:
sharing approach, which allows tradeoffs - the database
between efficiency and isolation for specific - the core system
applications. It can expand to include the - the tools - both STEP and user-supplied
most complicated real-time system or
compress to meet simpler requirements. Database
Mapping a project to this architecture is a Database - Each project has its own database,
major part of high level design. which is the central storage for all informa-
Figure 3 shows the STEP phases divided into tion associated with that project throughout
the three levels of development, its life cycle. A named collection of informa-
As the project moves to lower levels, the tion in the database is known as a com-
program is divided into smaller and smaller ponent; for example, a module or a subsec-
pieces, until at the lowest level, implementa- tion of a document. Each component stored
tion occurs (i.e., coding in Pascal, Ada, in a project database is related to the architec-
Chill....). Integration takes place when the tural framework and the methodology. A
project reaches the testing phases, proceeding module's relationship determines what can
from design to software test to system level, call it, what it may call, and what data it may

reference. A document component is related
Because STEP understands the hierarchical to the methodology in two ways: The point
relationship between architecture elements in the life cycle when it can be created, and
and establishes a common architecture for all the point at which it must be completed.
GTE software, it has the following benefits: Also, users may instruct the system to main-

tain additional relationships among com-- Increased probability that each project ts n assocati on mybn-
is on a solid footing. ponents. For example, an association may be

- Configuration and project management maintained between requirement document
controls may be applied, as a function components and software architecture com-
of architecture. ponents.

- The exact state of any architectural The database for a project is a tree structure
subdivision may be documented. of nodes in which each node can store all

- Personnel may be moved from project to components needed during the life cycle of a
project, even location to location, project. In fact, small and medium-sized pro-
with little loss of productivity. jects normally require only one node. Multi-
A new architecture is not reinvented pie node structures are used for several rea-
for each new project. sons:

- The architecture is enforced during Efficiency - if a node gets too large data
implementation. retrievals take too long.

- Testable, maintainable, and hence Security - access is assigned by node as well
reliable software. Ss

as by function.
The accumulation of metrics is a byproduct Support - database backups and audits get
of combining a standard architecture and cumbersome if a node exceeds the capacity
database. Information that assists in predict- of one disk drive.
ing program testability and maintainability Resources - large projects require more com-

puting resources than one computer can

641

...

.......................... ..:. . .-:.:-.-.-.-. :.:......4... *.'--.*- -- :::2:::+::. .*,----

11.0-.- -- Mr - -W

Stm

hqiawmmW Del mn'S

F tlalr M Z Um eta hai

Figure 4
Development Levels of STEP Phases

provide. Nodes or subnets of of nodes may mands. Components of Volume 4 track the
be on different computers. structure created in Volume 5. The files with

each component vary with volume, and
Each node is divided into five volumes: within Volume 5 with function and source

Volume 1 contains skeleton files used to ini- languages used.
tialize files in the other volumes, and instruc-
tion files that can be displayed at the user's Core System
option. Files in Volume I may be modified
by authorized users but may not be deleted T C se is
or created. - STEP commands

Volume 2 contains user aid files. These files - Development standards
are used to predefine commands and parame- - File system
ters to be run either on line or in batch. - Configuration management
They also are used to store the rules by
which components are selected.

Volume 3 contains all documentation associ- The STEP commands provide a variety of
ated with the software lifecycle other than capabilities associated with a project's data-
test and software design documentation. baelAter lo ito th h pr atgThis includes requirements, hardware base. After logging into the host operating '.~i..,

Thsriinlues euremns, ardweare system, a user runs STEP by entering the
description, user manuals, maintenance word "STEP" and a node ID. Now STEP
manuals, etc. commands and normal operating system

Volume 4 contains all test documentation commands may be executed. STEP com-
including test plans, test procedures and test mands, which in turn affect the node
results. database, allow the user to create, modify.

Volume 5 contains high level design and display, document and delete information.
detailed design documentation and source Questions regarding who has done what and
code. where are easily resolved by up-to-date

reports based on information in the project's! ~The contents of Volumes 2, 3 and 3 are con- - :
trolled by the user through the use of database. Table I summarizes the commands
DEFINE, DATA. DELETE and EDIT corn- available.

642

TABLE 1

STEP COMMANDS

Commands which create components BROWSE - selectively views and searches

DEFINE - creates all components in volumes files

2 to 5 except high level data TYPE - displays any file of any component

DATA - creates high level data components PRINT - prints any file of any component
(in volume 5) INFORMATION - displays state data for any

Commands which insert information component

EDIT - modifies contents of any file of any Commands which create documents
' component DOCUMENT - selects, combines and

ALTER - global edit or replacement across processes STEP components
any or all components PROLOG - generates a high level detailed

ALLOCATE - inserts data that associates design document
components REPORT - provides information on the

CERTIFY - marks external progress, e.g., a status of a node
successful review Commands which provide file handling

Commands which generate data capabilities

ANALYZE - checks syntax, enforces stan- IMPORT - transfers a file from host operat-
dards and generates reference data ing system to STEP

COMPILE - selects components for a release, EXPORT - transfers a file from STEP to host
builds source for a release, exports source operating system
ready to compile and/or object for source DOWNLOAD- transfers files from STEP to
already compiled a workstation

Commands which monitor and control a UPLOAD - transfers files from a workstation
project to STEP
STATUS - estimates, stores current status APPEND - appends STEP files
and reports on status "".s E
TRACK - creates and maintains an audit trail CHANGE - changes names of STEP files
of changes DELETE - deletes STEP files

PHASE - controls when phases of project are Commands which aid users
started EXECUTE - allows step to run without user

GLOSSARY - maintains a naming glossary of input
all mnemonics used in source code SUBMIT - allows STEP to run in batch

Commands which view the state of com- CALL - allows users to interface tools with
ponents STEP

SET- allows user to set personal defaults

Development Standards necessary for compiling unless all mnemonics V

The development standards listed below are of all its names are defined in the glossary.
enforced by checking user actions and the
results of those actions. STEP also allows Architecture - All procedure calls and data

usage must agree with the architecture -.-

specified in the high level design. Code that
Naming - All names used in source code are violates the architecture will not be promoted
made up of fixed length mnemonics whose to the compile level.

,. definitions are maintained in a naming glos-
-..-. sary. Code will not be promoted to the level Coding - The user may define format and

643 '5.

- : ;.;

[~-... .. *

design language content standards that are are defined below.
enforced by the system. This is done both by Block Type 0: An internal pointer block. It
activating built-in checks made on source and contains a sequential list of integer block
design language documentation, and by numbers. These pointer lists chain unused
tailoring of source code processors which blocks together.
analyze code.

Documentations - Use of documentation pro- Block Type 1: A structure block. It %
cessors, such as fiowcharters, result in docu- represents a directory and contains the
ments that follow a specific standard. User- appropriate series of directory entries. A
defined processors are also linked in using subdirectory is viewed as a file in the parent
the CALL command to further tailor docu- directory with the reserved extension
mentation formats. Skeletons are used to "DIRECT'.
preset component formats such that the user
essentially fills in the blanks. Block Type 2: Another type of structure

block. This block type is used to link the

A variety of control options are incorporated pieces of large directories of large files.
in the core system to enable a manager to Block Type 3: A data block.
tailor the system to project needs. In particu-
tar, command and subcommand rights may Configration Management
be tailored to each user or type of user, stan- The configuration management system pro-
dard enforcement parameters may be tailored vides: (1) interlocks to ensure information in
for each node, and password protection may use by one person is not changed or deleted
be applied to any component of any volume, by another, (2) reports which summarize the

File System - The STEP File System serves conditions and associations of all com-
as a machine-independent foundation for the ponents, (3) records of all changes made to
STEP command system. This greatly reduces all controlled components, (4) a framework
the need for special programming for corn- for all user actions. This framework provides
puter systems with different operating system users with complete information about any
architectures. components associated with a user's action.
This portable file system uses the host corn- Each component defined to STEP has one or

puter services available in most mainframe more revisions. Whenever a component
operating systems. Each version has been name is specified in a command the following

optimized to perform efficiently on its host. actions occur:
Usually, the limiting factors are the efficiency (1) The system displays the revisions for .- , ..- ".
of the host Pascal compiler, the capabilities the named component and its associated
of the host's asynchronous, direct-access disk control levels. A "?" input calls up the
systems, and the operating system's interpro- date of the revision, the name of the
cess communication. user who created it, and the reason it

The STEP File System is implemented on a was created.
host computer through a direct-access data (2) The user selects a revision.
file. Disk blocks are accessed asynchronously (3) The system checks to make sure the
using a low-level, host computer method selected revision is at a level consistent
which does not see any block structure. The
file system operates using disk blocks of' with the command to be executed. For

equal length organized into structure, data, example, if an EDIT command is given
and internal pointer categories. The structure and the revision selected is at a level
blocks represent directory structure and file that cannot be edited, the EDIT will not
storage information. The data blocks store be allowed. However, the user has the
file data. and the internal pointer blocks option of creating a copy of the

relate combinations of various block types. requested revision with a new revision
Individual formats may exist within a number.
category. according to use; unused blocks Revision selection logic may be
generally have no type. The types of blocks prespecified so that commands with

644 .--.7-

. - ".....- .j,......,.-....-...'...'.'............. •,-...... -.....-......... ... ,.-,.,.....-. '.......,...

-S bA .) -' A -. . .. " -

multiple selections such as DOCU- demanded a lot of work and significant
.-. MENT and COMPILE may be run in effort in the design phases. Yet the

batch or on line without user inputs, benefits from this extra effort are not
The important thing is that users always apparent until the testing phases. How-
know the framework within which they ever, by the time the project was corn-
are working. pleted most users were sold on the
A variety of reports are associated with advantages of STEP and looked forwardconfiguration management: to using it on other projects. As could

be expected with any large complex sys-
Control Level Report - summarizes the tern, experience in using it was essential
levels of each component. to maximizing the benefits. Our experi-

Release Summary Report - summarizes ence showed that users got more out of
releases that have been created. STEP the second time they used it.

Release Contents Report - identifies the Experience to date has shown:
revision of each component a release. (4) Testing goes much faster than expected.
Usage Report - identifies the releases (5) The resulting programs are reliable and "
containing component revisions, maintainable.
Trouble and Change Reports - provide (6) Projects are coming closer to budgets
an audit trail of changes. and schedules and have even met them.

A variety of tools are used with STEP. (Documentation is extensive, sometimes
They fall into two categories: tools that too extensive.
check user input and tools that (8) Documentation is consistent with code.
transform user input. Checking tools The following discussion deals with a
include syntax analyzers for each variety of topics relating to the use of
language. Transforming tools include STEP.
formatters, flowcharters, datamappers,
design language processors, and text Human Interface

(94, processors.
The STEP command being executed (9) Consistency is extremely important.
runs the tools. Users do not need to (10) Upper and lower case is much easier to
know the details of running a tool. read than all upper case.
STEP provides the necessary interface. (11) Users resent 'smart" responses.
STEP also allows users to integrate their Because STEP continually tells users
own tools, either called directly from when they have done something wrong,
STEP commands or indirectly through we thought humorous comments might
its CALL command facility, eliminate user resentment. Instead

5.0 Use Experiencee users felt they were not being treated as

The STEP environment was first used professionals. In fact, one user was
on a project in 1978?50. It has subse- reduced to tears after being called a
quently been used on a variety of real- "dummy" by the system.
time and non-real-time applications (12) Extensive on-line help is more impor-
totalling more than 500,000 source lines tant than documentation. We made the
and is used to maintain itself and mistake of providing on-line help only
extend its capabilities. These projects at the command level. The solution is
include telephone switching systems, air to provide an expert mode for experi-
traffic control simulators, and communi- enced users.
cations control systems. Its first use ,.-
was mandated by .op management and User Documentation
supported by appointing one of the c-,.,
developers as software task manager. (13) The three most important things in
Initial use met with numerous corn- documenting a system are examples.
plaints because the methodology examples and examples.

645

• o°~~

.'p.-

(14) Two types of documents are needed; (21) The decision to make configuration
one that explains the theory, i.e., what's management part of the backbone of . , X
done and why, and a reference manual. the system instead of a separate tool *,."-

EViency (Workstations) worked out well. It allowed users to
always be aware of the context in which

A mainframe environment will always they were working and ensured that all
be overloaded. If you provide more actions on all data were within the
computing resources, you get more prescribed boundaries.
users. The only solution is to provide (22) The design techniques resulted in code
smart workstations which can be added Tha so thies f suatydchn and

as users are added. Still, every effort that stood the test of many changes and

should be taken to make the mainframe extensions.

as efficient as possible. We removed (23) Separating the actual compiling and
some functions because efficiency was testing from the rest of the system
more important than having those par- worked well. That is, when the source
ticular functions. code was exported, it was syntactically

and architecturally correct and in the
Performance proper format for compiling. The test

results were inserted into STEP by the
(15) Users are afraid of performance meas- CERTIFY command. This provided a

urement. The ability to collect data on flexible interface with language-
individual performance and to compare dependent environments (i.e., com-
user's work was designed into STEP but pilers, debuggers) and target systems.
never implemented because of user (24) Given the advances in microprocessors
resistance. It was difficult enough just and user interface techniques over the
getting people to try a new system. last few years it is questionable whether

(16) Young users became efficient quickly a mainframe system is still appropriate.
and tended to get more out of the sys- A distributed microprocessor based sys-
tem than programmers who had been tem with smart workstations, file and
around for a few years. In fact, it compute servers seems a better way to
turned out that novice programmers go today.
became contributors more quickly. (25) The most important part of an environ-

(17) Users need to feel they are part of the ment is user documentation. It was the
action. It is important to find ways to most underestimated item in the
make users feel they can contribute to development.
the evolution of the system. It is also a I 7
good idea to publicize success using
STEP by giving credit to the people References
using it.

(26) A.F. Rosene, "Phoenix Software
Portability Development System Overview."

Presented at 15th Design Automation
(18) It was possible to make an environment Conference. June 1978.

that was transportable among computers (27) STONEMAN, "Requirements for the
as different as IBM and DEC20 and still Programming Environment for the
have the same user interface. Common High Order Language," DOD,

(19) It would have been a lot easier not to. February 1980.

6.0 Conclusions (28) J. Roder. "Phoenix Architecture."
Presented at 15th Design Automation

(20) The architectural framework was essen- Conference, June 1978. Published in
tial in the design of STEP. It made ACM SIGDA Newsletter, Vol. 8, No.
many things possible that otherwise Summer 1978...
would have been impractical. (29) A.F. Rosene, I.E. Connolly, K.M.

Bracy, "Software Maintainability, What
"o .

646

.

It Means and How to Achieve It." (30) E. Erickson, and J. Roder, "A Generic -

IEEE Transactions on Reliability, Vol. Approach to Software Validation",
R-30, No. 3. August 1981. Phoenix Conference on Computers and

Communications," May 1982.

647

RESUME

A. FRANK ROSENE
Communication Systems Division
GTE Government Systems Corp

Needham Streets, MA 02194-9123

Program Position ENGINEERING TASK MANAGER

Years Experience 27

Education BS, MS - MIT

Clearance TOP SECRET

For the past twenty-seven years Mr. Rosene has been involved in the areas of software
technology, telephone communication, system design, and radar data processing design.
He has been responsible for a variety of software development in the communications and
operating systems areas.

Mr. Rosene is currently manager of the Software Technology Department of the Com-
munication Systems Division. In this role he supports the use of and extension of the
division software development environment system, STEP. He has also been the
Engineering Task Manager for the ALTAIR Upgrade study.

Mr. Rosene led in the development of the generic software architecture concepts which
are not in use on all CSD projects. He was software manager of the International Switch-
ing Program from 1971-1976. That project was tasked to develop a new line of switching
systems for the international market. Prior to that. he developed software for the car
track system of the transportation and industrial division of GTE. r"

During the sixties he managed the software development for the first stored program
switching system developed at GTE. His initial few years at GTE were involved with
radar data processing program design for a variety of weapons and defense systems.

Societies and Papers

Member of the Institute of Electrical and Electronics Engineers Author of paper entitled
"Phoenix Software Development System Overview" Joint author of paper entitled
"Software Maintainability-What It Means and How to Achieve It" Published in the IEEE
Transactions on Reliability, Vol R-30, No. 3, August 1981.

648-

64

..........................

and.

DEIG

A.Frdeik-'sn

Manaer o SofwaraTecholeg

MEb

Commnicaion ystes Diisio

REQU IREMENTS
f or

REUSABILITY

cSTANDARD ARCHITECTURE

cSTANDARD RUN TIME ENVIRONMENT

c0 ENVIRONMENT WHICH ENFORCES STANDARDS

650 ,.

GENERIC ARCHITECTURE

" STATIC VIEW

" DYNAMIC'VIEW

0~ BENEFITS

a Portability
aEnf orcement

a Proven

651i

STEP

A Life Cycle Software Environment

A. Frederick RoseneL
Manager of Software Technology

GTE
Communication Systems Division

652

INTRODUCTION

CDESIGN

(A C USER INTERFACE

CEXPERIENCE

653

STRUCTURE

TOL

654

,..,.

DATABASE

0CONTENT

* REQUIREMENTS
* DESIGN DOCUMENTATION
-TEST DOCUMENTATION
* USER DOCUMENTATION
a INSTRUCTIONS & FORMS
e COMMANDS & SELECTION

0> NETWORKING

* EFFICIENCY
* SECURITY
e SUPPORT
. RESOURCES

65

STANDARDS

0 NAMING

0 ARCHITECTURE

0 CODING

0 DOCUMENTATION

656

V* .l. Y. -- -.*.-* -JI- -J -. m .. p -.. w- w-, WT k I - - - -

CONFIGURATION
MANAGEMENT

*~ BACKBONE NOT TOOL

* REVISIONS

*~ REPORTS

*~ AUDIT TRAIL

657

I COMMANDS

0 which create components
0~ which insert information
0 which generate data
0 which monitor and control a project
0 which view the state of components
0 which create documents
0~ which provide file handling
0 which aid users

658

EXPER I ENCE

0 PROJECTS "e

s COMMUNICATION SWITCHING
a AIR TRAFFIC SIMULATION :
a COMMUNICATIONS CONTROL
a STEP

' RESULTS

o TESTING TIME REDUCED
o MAINTAINABLE PROGRAMS
a BUDGET & SCHEDULE
* DOCUMENTATION CONSISTENCY
* DOCUMENTATION TOO EXTENSIVE

659

* HUMAN INTERFACE

SCONSISTENCY

'~UPPER /LOWER CASE

* SMART RESPONSES

* ON LINE HELP

660

-,.

CONCLUSIONS

0 ARCHITECTURAL FRAMEWORK ESSENTIAL

0 CONFIGURATION MANAGEMENT BACKBONE

0 MAINTAINABLE SOFTWARE A REALITY

0 LANGUAGE INDEPENDENT ENVIRONMENT

0 USER DOCUMENTATION UNDERESTIMATED

661

SPECIFICATION-BASED SOFTWARE

ENGINEERING WITH TAGSOTM

G. E. Sievert
T. A. Mizell, Ph.D.

In a paper appearing in Computer in Under the current paradigm, the only
November 1983. Balzer, Cheatham, and formal specification language is code, and the
Green asserted that the existing software only formal specification is the program.
paradigm (Figure Ib) had fundamental flaws Although modern programming practices
that exacerbate the maintenance problem. have defined techniques to make the program
The authors pointed out that these flaws were more readable, the fact remains that the pro-
that there is no technology for managing the gram is far removed from the user. Pro-
knowledge-intensive requirements analysis grams show only detailed logic; and from that
and design activities and that maintenance is view, it is difficult even for programmers to
performed on code. The authors proposed a glean an understanding of the performance
new automation-based paradigm (Figure la) characteristics of the software. As a com-
for which "the technology needed to munication vehicle, the program listing is
support...does not exist." This article analogous to attempting to describe a televi- I--
describes a software computer-aided develop- sion in terms of only schematic drawings. To
ment system that does exist and is based on the user, the program is an attempt to
the proposed automation-based paradigm. describe a picture using only words written in

a foreign language and the price of the discip-
Although the authors used the mainte- line enforced by modern coding languages is

nance problem as the basis for asserting that that the language has become more foreign.4 the current paradigm has fundamental flaws,
they could have used any portion of the Under the current paradigm, the
software life cycle to make the same argu- deficiencies are addressed by requiring the
ment. For years, the industry and end-u.ers production of English documents that
alike have recognized that there is a software describe the contents of the formal
crisis. Symptoms of this crisis are visible specification. These documents are often
everywhere: costs overrun; software does required during the analysis design phases of 1
not meet user expectations, productivity is the project. In theory, the practice is good
not greatly increasing; software specifications because it makes the design more visible to '-

do not reflect the code nor are allowed to the user.
become outdated; and, the list goes on and
on. However, programmers tend to design

Although the symptoms are visible, the in code. Program Design Language 7"

cause of the software crisis has been less approaches act as (PDL) an alternative to
apparent. As a result, response to the crisis English specifications and keep the program-
has been to treat the symptoms by educating mer in the code environment by allowing

has eento teatthe ympomsspecifications to be created in code-likeprogrammers, attempting to enforce discip-
line, providing software tools, and creating languages. These languages do improve the
new coding languages. All of these software product but once again perpetuate "
approaches do help to keep the software the fundamental problems caused by the
crisis, under control, but they do not treat current paradigm.
the cause of the crisis. The cause of the .As long as programmers use the current
software crisis is code. paradigm focusing on code, we will never

achieve the orders of magnitude gain in pro-
ductivity that are needed to end the software .

-TAGS is -t t.a-.rmarK .f Tdledyn, Brow,. Enginring, h1. crisis. The anticipated gain in productivitv. if

b3

IUFRMORMA BEVELMWT BI~fOPET

FOSPELI IFRALSIIICATIO HAU
U'ICPICTD Pa OPIMIZUATOION CNRT
PNOOTVYN STANDRD IPROOYE RAE NAL

PROTOYPE AUDAIS AAINS INTET PRT~PROGRAMRDE

PROTTYP ISOME ~MANTEANCE J IMMTTO MNA

ALEMENATIOACE PAAIDED CODEN TPATDIG

SPR ECIFICATION MAINTINEDDEi N G UEIINSCOMT

MINTTNNC IYND4 RRTOYPPRETELAYUA

INMALNSATO MAW COIDND COD SOUTCD

INFORMLRQURMNT NORAONRT

COIN

Lc~i~L

Figure I. Paradigm comparison: (a) automation -based paraimadI)cretprdg

664

......................... "

. . . .'

we treat all of the symptoms, is a multiplier the design of any system, whether hardware,
of 4.34.?20. software, embedded, or for that matter, even

a management system. The only constraint is

The new paradigm has been substan- that the end product of the design effort
tially implemented in an approach called manifests the basic components of a system
Technology for the Automated Generation of or group of parts, which interact via:
Systems (TAGS). TAGS is the product of
years of systems engineering and indepen- 0 Data links
dent verification and validation experience.
This experience lead the TAGS development o A controlling mechanism that directs
team to the same conclusions and to a solu- how information passes among the parts -
tion that is remarkably close to the solution of the system
proposed by Balzer et al.

T An identified hierarchy within the sys-TAGS is composed of three basic ele- tern.

ments: the Input/Output Requirements tem.
Language (IORLOR?); a system/software
computer-based tool system; and TAGS The highest level in an IORL system is
methodology. The rest of this article is the Schematic Block Diagram, or SBD (Fig-
devoted to describing the three basic ele- ure 2). Diagrammatically, the SBDs are rec-
ments. tangular boxes that identify all the principle

system components and the data interfaces
The Language IORL that connect them. In IORL, the designer

must maintain a distinct differentiation
between data flow and control flow. Here the

Thirteen years ago, Teledyne Brown major structures are more or less "black
Engineering, after experiencing difficulties in boxes," with the respective data flow, but
communicating system requirements, began control flow is not address at this level.
to develop a tool that would deal with these Block diagrams have been around for many
problems. The tool was designed to deal with years as a way of conceptualizing the func-
problems associated with system development tions or components of a system in order to
and had to meet several requirements: show the control or data connections among

them. One of the advantages of the SBD is
o To enforce a rigorous methodology for that it gives a quick synopsis or overview of

system development the system.

0 To be applicable to all systems. not just In the sample top-level SBD, the
computer systems unique name and number for each com-

ponent, the use of comments, and the unique
o To be easy to use (and hard to misuse) page identification should be noted. The sys-

tern name (SYS) is SAMPLE. The docu-
ment name (ID) is SAMPLE. For a top-

o To allow engineers to express system level SBD. document ID and system name
performance characteristics and algo- must be identical. The section name (SEC)
rithms using common mathematical is SBD.
notation (i.e.. superscripts, subscripts,
matrix notation, etc.)

The breakdown of an SBD component - -

into a lower level SBD is continued until the
To use graphical symbols that were resulting components can no longer be
derived from general systems theory. divided into independent units. Each SBD

represents a different document, and the
IORL is a graphics and tabular document ID must appear on all other related

specification language that allows the designer diagrams and tables. The second-level SBD
to identify each important component during is a decomposition of Component A on the

665

.pI'--"

.3.-

CMhSAU~ SAUII.4N44 ISSAL MACUO I C L 1 .

&I4Uj.4g SWC

o anu towCwmunA Sao.

ITl~s4 SSe0 aICL

~1e C-..- "

Figure 2. Schematic block diagram

top-level SBD. The document ID is now The Predefined Process Diagram (PPD)
Component A. The external interfaces refer (Figure 4) is used to depict the detailed logic
back to the higher level SBD, The label of flow of a single-predefined process that is

*each internal and external interface reflects referenced in an IORTD or another PPD. A
* its originating document. In addition, multi- PPD and an IORTD are similar in structure.

pie identical interfaces and components can However, PPDs are used to improve the rea-
be distinguished by subscripts. dability of the specification, allow the

identification of dependent components (see

The Input/Output Relationships and Methodology Section), and to permit the
Timing Diagram (IORTD) (Figure 3) shows specification to be presented in a hierarchical
the overall control flow for a single SBD manner. Consequently, a sophisticated sys-
component. The example gives a logical tem design that requires numerous complex
breakdown of Component B on the top-level processes will make extensive use of PPDs.
SBD. This is indicated at the bottom of the
diagram by the document ID SAMPLE and The sample PPD defines process 10 on
the number 2 in the section name IORED-2. IORTD-2. This is indicated at the bottom of
Thus, the position of this page within the the diagram by the document ID SAMPLE
system hierachy is clearly established, and the section name PPD-10. The PPD

definition symbol in the bottom right-hand
Control follows the direction indicated corner is required and may also include a

by the connectors from the start symbol name and brief description. Processing
through the Fan-InOR to the processing sym- begins at the entry symbol. Once process 80

* bol where an assignment is made. (An has been successfully performed data are pro-
assignment is an equation defining variables. duced as specified by the output symbol. pry.,
Variables will be discussed in relation to Data
Flow in the next section.) Process 10 is then One of the features of the PPD is that
executed and a decision is made based on the the process and detailed logic may be saved
comparison statement. If the statement is on disk file for later recall by another IORL
true, control flows to the Fan-Out AND system. It is this library feature that allows
where both process 30 and 40 must execute. the saving of enormous hours of develop-
This is an example of IORL support for ment time as the use of the tool (described
parallel processing. later in this article) increases. This is analo-

666

...- ::::

&The iONTOeuofuto
Commeiuw. an rns

RNeftwb r PT

A
A 'wG A 1

SmSAU~TE 6AN44 SS~iU610CO2 P4411 CL

Figure 3. Input/output relationships
and timing diagram

£TNWPPO uso" to
prwnm ~s 10 " "
ION1TO wn sea

Sm SA aT16.J1Aft44 IOSAMPLA KC X0.10 PA411 Ck

Figure 4. Predefined process diagram

667

gous to the custom-created library subrou- Each group is transferred as a unit in a
tines so common in every ADP center. As continuous I/O sequence. A variable, or
the number of library PPDs increases, an parameter, may appear in more than one
IORL system could involve a lengthy series group on an IOPT and on more than one
of library calls without having to custom gen- IOPT.
erate a routine each time another system is
designed. The IOPT page shown in Figure 5

defines some of the data that are transferred
across the interface SAMPLE-3 in the top-
level SBD, shown in Figure 6. This is indi-
cated at the bottom of the table by the docu-

Other than a reference to data inter- ment ID SAMPLE and the number 3 in the L
faces on the SBDs, no attempt was made section name IOPT-3. Data Group 6 con-
until now to discuss the representation of tains two scalar variables. The variable TIME
data flow. Data flow in IORL is shown by may assume an integer value from 0 to 60
the assignments made to variables in seconds. The variable MONTH may assume
IORTDs and PPDs and by use of I/O sym- an integer value from 1 to 12 to indicate the
bols in the IORTDs and PPDs which show appropriate month of the year. Data group 7
the timing of the flow of data between com- contains only one variable, named MONEY,
ponents. The basis for this approach is that may indicate a sum from zero to any
described in detail in the methodology sec- amount. The meaning column indicates that
tion of this paper. Data in IORI is shown in this amount must be measured in dollars.
tabular form using a set of tables each of
which is similar in format except for the data An Internal Parameter Table (IPT)
Shierarchy implied. The highest form of data (Figure 6) defines variables that are internal
definition is shown in a special form of an to one IORTD and its associated PPDs. The
Internal Parameter Table (IPT-O). Data IPT follows the same general rules as the
defined in this table is global in nature. The IOPTD, except the use of groups is optional.
next highest form of data representation is an
Input/Output Parameter Table (IOPT). This
table shows data which pass over an interface The IPT page shown in Figure 6 defines
between two components and variables some of the variables internal to IORTD-2,
defined in this table are defined for both shown on the facing page. This is indicated
components of the interface. Data which is at the bottom of the table by the document
defined for an individual component is ID SAMPLED and the number 2 in the sec-
defined in IPT-n (n>O) and finally, data tion name IPT-2. A variety of parameters is
which is limited in definition to an individual illustrated to demonstrate the range of appli-
PPD is defined in an Internal Parameter cations supported by IORL. The name of
Table (IPT). These tables all define each each variable must begin with the symbol
variable used in an IORL specification, shown to indicate the correct data type. The
including English description, variable name, variable $DATA is a string of alphabetic
legal or in-tolerance values (which imply characters varying in length from one to
type), units if applicable, and value mean- twenty. The variable !DATA is a matrix
ings. Data structures are defined in another composed of six rows and six columns of
diagram form, Data Structure Diagrams values, all of which must belong to the set of
(DSD). The following paragraphs describe real numbers. The variable &DATA is a log-
the tables of IORL in more detail. DSD ical condition.
descriptions are omitted due to space limita- A Predefined Process Parameter Table
tions of this article. (PPT) (Figure 7) defines parameters that are

local to one PPD. However. the PPT may
An Input/Output Parameter Table include references to variables in other sec-

(IOPT) (Figure 3) is associated with each tions used by this PPD.
interface on an SBD. It is used to identify,
organize, and quantify all information that is The PPT page shown in Figure 7
transferred across the specified interface, defines some of the variables local to PPD-

668

mt

•.. ,..... . ..-... , - . _

4sP~~now uP. 6g MI s.u*
7 .6 OAT GOR -

Figure 5. Input/output parameter table

4WP**MTO 49RU O 3pYa" %#A W*AUM "MWMWVM*AMian

wit aya (..

WATA (i.TA

In @MR mu ^O a WAPg M wr 1 MW a

Figure 6. Internal parameter table

669

V7

•m I 'aam° man ol.d* a4 9-644 A.... .'

B, '

a} IUI

on~~J. lop•AN2I

Figure 7. Predefined process parameter table

10. This is indicated by the document ID o CONFIGURATION MANAGEMENT
SAM;LE and the section -mme IPT-10. The
first four parameters are arranged as a single o SIMULATION COMPILER.
record that is named SEQUENCE. Such a
definition may appear on any parameter table It is the intention of the designers to
and is always marked by B ---B for the make its use as simple as possible, since the
beginning of the record and E ---- E for the engineer should be concentrating on design
end of the record. In this case, NUMI, effort and not be burdened by learning a
NUM3, and NUM4 may assume any integer great deal of work station control code. The - --

value. However, NUM2 must assume the system graphics can be created, stored, -
absolute fixed value of 9. Similarly, the retrieved, and modified on disk without hay-
string variable $TITLE must assume a fixed ing to leave the work station. In addition to
length. Since the minimum and maximum the hardcopy option, the IORL documents
values in the meaning column are identical, can be deleted and/or stored on magnetic
$TITLE must always contain exactly ten tape. The IORL graphics software, more-
characters. over, automatically expands or contracts to

ensure the best diagrammatic fit around the

Thus, in summary, it can be seen that system, thereby saving space.
- IORL adequately differs between control and
, data flow, and at the same time is able to The storage and recall activities com-

incorporate both into the same system design mon in all on-line systems are achieved
process. through an application package called

STORAGE AND RETRIEVAL. When the
system under development has been com-

The TAGS Tool pletely entered onto a disk file, the DIAG-
NOSTIC ANALYZER checks the IORL

Tvdiagrams to ensure that the system contains
no static (as opposed to dynamic) errors.

contained approach to system specification Static errors typically include syntax checks,
consisting of the IORL language, and a range checks, input/output problems. etc.
graphics work station with four software The DIAGNOSTIC ANALYZER can find
tools: over 200 types of static errors. If no static

errors were found in the system, the SIMU-
0 STORAGE AND RETRIEVAL LATION COMPILER can proceed to gen-

erate a definition of run-time parameters,

o DIAGNOSTIC ANALYZER simulate the system created in IORL, and

67'0

.....................

process the output data. If any dynamic versions of a software system may be oper-
errors are present, the IORL code can be able at any one time, leading to the observa-
corrected in STORAGE AND RETRIEVAL tion that management problems can grow
and recompiled, linked, and executed again exponentially if some mechanism of tracking
using the SIMULATION COMPILER. The these version is not available.
combination of DIAGNOSTIC ANALYZER
checking tor static errors and the SIMULA-
TION COMPILER checking for dynamic TAGS Methodology
errors enables the software engineer not only
to develop a system but also to validate sys- When used to create system or software
tem performance and experiment with optim- specifications, a unique TAGS methodology
ization. This frequently results in alternative has been developed that is designed to imple-
designs that are more effective. The SIMU- ment the automation-based paradigm. The
LATION COMPILER also allows for testing methodology is based on system engineering
specific algorithm performance, enabling the p esd is esed to utieethe

engineerprinciples and is designed to utilize the
rithmsepossible, notsimply onecthat will potential power of the pictorial IORL. 'This
work.aic methodology can be characterized by four

work.basic activities:
The process of optimization is not

viewed as a distinctly different step. It is, in o Conceptualization - User concepts and
fact, expected that the designer be able to requirements are used to develop a con-
demonstrate that the chosen design is the ceptual model that is the basis for sub-
most effective design possible under the con- sequent engineering.
straints. This tool allows the designer to
denionstrate that this expectation has been o Definition - The model is developed

met, and, in fact, the chosen design is the and described in terms of functions and

best one under the existing constraints, performance requirements.
Another strong future feature of the TAGS
package is that DIAGNOSTIC ANALYZER, o Analysis - The model, as defined, is

with the SIMULATION COMPILER, will analyzed to determine that it is com-

generate an Ada * program that describes the plete and correct and provides an accu-
system. The actual simulation runs are per- rate description in engineering terms of

formed by compiling and executing the Ada the system desired. Redefinition is per-
emitted. The Ada code produced by the tool formed as necessary.

may be executed on a larger, perhaps more o Allocation - The functional and physical
powerful, computer if the engineer so requirements are allocated to physical
desires. subsystems.

Another package is available for These activities have been incorporated
configuration management of the IORL sys- into the methodology model shown in Figure
tem. IORL, like any automated tool, can 8. The development process is viewed as
produce a large volume of output, as well as essentially a self-contained engineering L

--a number of different versions of the activity that interacts with three other groups:
designed system. users, management, and IV&V. Users

describe initial requirements, participate in

As the number of changes increases the reviews, and provide clarifications. Manage-
problem of system management increases ment provides the nontechnical decisions that
also, which after a time, becomes burden- influence the development effort and provide

some. CONFIGURATION MANAGE- the resources required. These activities
MENT enables the user to establish a set of include providing schedules and staffing, con-
orderly scheduled reviews of the develop- trolling expenses, and monitoring progress.

ment process. It allows management to base- IV&V serves as the technical representative
line a system, of both the user and management.',. lne a sstemmodify it according to '-.

specifications, correct oversights, and imple-
ment tradeoffs. This last feature was The development process itself consists
developed from the realization that many of three interrelated process: evaluation.

671

a.. I

- 00

a,0

4. o'A
a c a

Eq

00

100

0 I

3. C.

672

I',- , . --

specification and implementation. The pro- possible to further characterize data flow and
cess starts with the receipt of user require- control flow. In a system, control flows are
ments. Those requirements are evaluated to limited to individual independent cor-

. ' determine that they are complete, consistent, ponents (by definition). Data flow through a
and potentially implementable. The evalua- system is not limited. Data flow from one
tion will continue, dialoguing with the user if independent component to another as it
necessary, until the initial set of requirements moves through the system. The transfer can
are sufficiently understood to permit only occur if the control flow of each
specification. The specification process is independent component is synchronized in
then performed. After the specification pro- such a manner that one component is ready
cess is completed, the resulting specification to accept the data as input when the other is
is reviewed and evaluated. The results of ready to output it. This implies that time
this evaluation may be a decision to modify specification is a part of data flow
or implement the specification. The imple- specification.
mentation is then further evaluated, and the
results of that evaluation will result in a deci- In particular, time specification must be part
sion to modify the specification or a declara- of any input or output process between
tion that the system is ready for operational independent components.
use. It should be noted that in terms of the
methodology, there is no distinction between The application of the above charac-
system" and "software". In general, how- teristics lead to the fundamental concept

ever, software specification is viewed as a behind the TAGS methodology:
special case of the overall system specification - _
oriented TAGS methodology. SBDs are used to show data flow -

between and partition independent
The specification process of the TAGS components. For the components

methodology extends the semantics of IORL represented on the SBD, data flow and
by controlling the use and content of specific associated timing dominate control flow.
IORL diagram forms. To summarize the

LO specification process, it is necessary to
describe the general characteristics common IORTDs and PPDs are used to show
to both systems and software as defined by control flow and the relationship
the TAGS approach. between dependent processing ele-

ments. :heir use states that for the
processing elements shown, control

Data flow refers to the movement of flow dominates. Data flow and timing
data into, through, and out of the system. are less important.
Control flow refers to the sequencing ofoperations performed within the system. "-Systems are also composed of two types of The actual specification process can be

components: independent and dependent. summarized in four basic steps. The four-
Independent components are components step summary (Figure 9) is as follows:
that have their own well-defined control
flows. For example, in a network of two Step 1: Build the conceptual
computers, each computer may be defined as model.The general form of an SBD that
an independent component since each corn- represents the system to be specified as a sin-
puter executes its own set of instructions in gle component and the environment as many
parallel with the other. Independent corn- unique, independent components. The
ponents can be composed of independent or environment is everything with which the
dependent subcomponents. Dependent corn- system must interact (i.e., other systems.
ponents on the other hand are components in operators, etc.). Interfaces between the sys-
which the execution of one component tern and the environmental components are
depends on the previous execution of the not generally shown. As an example, Figure
other. That is, dependent components are 9 is a conceptual model for the TAGS
dependent in a control flow sense. methodology. Note that obvious interactions

between environmental elements have not
With the recognition that both indepen- been shown. This representation sets up an

dent and dependent components exist, it is important thinking pattern in the engineer.

673

-67 .7,7 . . •

ESTART

D THE ,-
CONCSIML
MODEL

3V

CONSIMUCT CONSTRUCT OICOMPOSrON DEOOMM So
CONTROL FLOW RELATlONSHIPO REQUIRED COMPONENT INTO

In T1IRIS OF AN IORTO AND PS SUIscOMPOUENTS

PROTOTYP 13 JMPLEMENTAILE

~Of ALL lMS

" TOTYPI[VALIOATION
CAN CAUSE THE SIC2FPICATION
PSC, M T9. BE STANTD

Figure 9. Summary of the specification process

674

674''-

V,,

-- N -

Specification must be approached from the decomposition that may or may not go all the
way the target system sees the environment way to the lowest level of mathematical
In TAGS, this is called "an inside, looking definition during this step. Note also that the

"" out" approach. In developing the details of higher levels of control flow specification are
specification, it is not good practice to con- developed primarily in terms of PPDs. This
sider complex interactions between approach is called PPD rich in the TAGS
environmental components in order to deter- methodology; and since IORL's syntax per-
mine that special cases within the expected mits a meaningful description as part of each
interface between the environment and the PPD referenced, the approach provides a
system will not happen. For example, it is natural, user friendly way to communicate
not reasonable to decide that a bad message the overall functions and flow of the system
response will not happen because the opera- which can be read even by reviewers who
tor is well trained. The system must react to have limited knowledge of IORL.
all stated interface requirements even though Although the basic methodology of this step
it appears they will not happen. This is stepwise refinement, the overall approach
approach makes the system relatively imper- should not be misinterpreted as the develop-
vious to changes in the environment and ment of a set of purely functional require-
later supports changes in the maintenance ments. Remember, that the IORTD is used
phase, to show the control flow within an SBD com-

ponent and that the SBD represents a model
Finally, it is important to find the pre- of the system itself. The specification step is

cise boundary between the system and the an attempt to develop a prototype of the sys-
environment since this boundary can later be te, a prototype in which components are
used to determine the precise input/output allocated to an implementable architecture,i
usedatoaetermin he precise inputpt If the prototype can be verified as meeting all
characteristics required by the system to of the system requirements, it will become
interact with the environment. Often, this the implementation.
boundary occurs on a physical boundary but teipmnaio
not always. For example, if the system to be In simple cases, the conceptual model
specified were a software applications package r i c v t a
to be run under an existing operating system, rv
the components shown on the SBD might be required to support the prototype. However,application software, keyboard/display and in more complex systems or in systems

supporting OS, disk files and supporting OS, where there are severe timing constraints
supprtig OS dik fies nd sppotingOS, (i.e., timing dominates control flow), a more

etc., to signify that the interface between sys- de t mdternandenvronmnt s asoftareto- detailed model of the system must be used as
software interfaceo the basis for allocation and specification.

This condition is recognized when parallel

paths are required that also must communi-
Step 2: Build the corresponding cate with each other or it is recognized that

IORTD and high-level PPDs.IORTDs are PPDs must execute in time-dependent
used t , identify and show the control flow faKion (i.e., periodically). Another condi-
relationships between major components. tion in which this can occur is in large pro-
Because IORL has an "AND" construct it is jects in which management considerations
possible to show parallel control flows. The dictate partitioning of the system into
recognition that independent components manageable portions.
exist frequently shows while developing the
IORTD anc high-level PPDs. Other conditions can cause a decision :o

be made to decompose the system model
Normally, Step 2 is accomplished using SBD) in more components (a new lower

engineering analysis to organize system SBD). One obvious one is the need to more
requirements closely model an imposed or a prior physical
are related to cach other by defining their architecture. Ideally, the specification should
control flow relationships. Each PPD is then dictate the architecture. However. n prac-

• defined in terms of sublevel PPDs that are tice. software cngineers often start with "
again related to each other in terms of' con- fixed system architecture, such as a known
trol flow. Note that the basic methodology of computer, and must fit the specification to
this step is stepwise refinement or functional the architecture.

h'5.

It should be noted that the decision to vides little basis for concrete and definitive
decompose the system model into corn- design analyses. Although large projects
ponents is a significant one requiring analysis employ some analysis, such as timing and siz-
and review. SBDs enhance data flow ing studies, optimization studies, etc., these '- -

definition but at a cost of corresponding loss studies are based on predictions of the design
of control flow visibility. The tradeoff must (remember the true design takes place during
be studied to determine that the strategy will the coding period after the analyses are per-
be beneficial to the overall system formed). At best, these studies can be used
specification. to verify the design. True validation that the

system will perform according to user
Step 3: Decompose the SBD into corn- requirements must wait for coding to be

ponents. If this step is required, the system complete.
component that must be decomposed is
represented as a set of subcomponents on a For years it has been recognized that the
new lower level SBD. Step 2 must now be real problem behind software cost overruns is
repeated. In this case, the step starts by allo- that errors are created during the design
cating the PPDs defined in the previous level phase that are not found until the test phase
to the proper subcomponent. Step 2 will sub- (or worse, in the maintenance phase). With
sequently be performed as a minimum for TAGS methodology and tools, these errors
each subcomponent that has PPDs allocated can be found and removed during the
to it and for other subcomponents. if specification phase.
required, to complete the specification.

Activities that can be performed during
Step 4: If Step 2 has not already been the prototype phase with the aid of the

done, continue to define all PPDs on the TAGS tools include:
lowest level in terms of PPDs, assignments,
decisions, inputs and outputs, etc., until no o A general analysis for correctness.
PPDs remain to be defined. This step states focusing on dynamic
the level of detail to which the specification situations and algorithm design.
must be taken. This level is a complete algo-
rithmic definition level that allows for a true o Timing and sizing
validation of the specification. There is an
exception to the rule of Step 4. A PPD o Optimization and refinement
reference may be left in the specification. if
and only if, it is already defined in a TAGS o "What if' analysis
library. Thus, there is a built-in advantage in
the TAGS approach to reusing existing o Tradeoff studies to determine the _
PPDs. best implementation form

of critical algorithms
Life-Cycle Models

o Fault tolerance studies
TAGS methodology has been incor- The translation phase activity consists of

porated into a unique life cycle designed to translating the specification into an appropri-
take advantage of the specification-based ate set of plans that includes additional
paradigm upon which it is based. The life implementation detail to allow the system to
cycle is shown in Figure 10. The life cycle be built. In the case of software, this phase
consists of a sequence of specification phases consists of translating the IORL to the
each followed by a prototype validation target/implementation language. Currently.
phase. this activity is a manual operation. Experi-

ence has shown that it can be accomplished
Perhaps, the real advantage of by non-degreed personnel and that the nor-

.pecification-based paradigm lies in the fact mal rate of conversion is 200 commands of

that a prototype validation phase can be target-coding language per day per translator.
inserted into the life cycle. It is no surprise
that most traditional software life cycles have Testing consists of determining that the

no provision for design analysis. The current translation is correct. With TAGS technology.
paradigm with its formal specification pro- this is normally a relatively short process and

,I

SICIFICATIO OTOTY SECO r0 ITOrtY
PEI AO VALIOATION PIA T N VALIOATION TESTI AG

@ C8OCET1ALIZATIOA1 @ ANALYIS e ALLOCATION @ A Y a ALLOCATION ANALYSS
@ ALLOCATION * 0 FAIIII~IImoA ,UIAT * m * a m SOFTWARE
' M0 InTI Woaor, AALTRCTE)

Figure 10. TAGS development life cycle showing the system engineering activities
performed during each phase in order to importance

is analogous to unit and informal integration data to be collected, the timing constraints
testing in the current paradigm. desired for the simulation, and, optionally,

the format for data input and output. When
The life-cycle model is designed to simulation is complete, the user can review

accommodate a large, complex system any errors detected and the data generated
development process. In this case, multiple during the simulation. Future versions of
specification and prototype phases are the simulation will allow user interaction dur-
required corresponding to the multiple ing execution of the simulation.
specification cycles used by systems and
software engineers. These cycles normally Project Experience With TAGS
focus on system. subsystem, and then
software levels of specification. In the TAGS Teledyne Brown Engineering (TBE) has
methodology, more than one SBD level may used IORL with a prototype version of TAGS
be created for each of the systems/software for the last 10 years. Most of the early use

A6 cycles. However, the definition for each of IORL was as an analysis tool supporting
must be a complete prototype. Software TBE's systems engineering and software
specification alone seldom requires more than Verification and Validation (V&V) product
one specification cycle, lines. Until 1979. the language and prototype

tools were proprietary to TBE. In 19"9.
Putting It All Together TBE recognized the potential of IORL as a

software specification language and formed a
The three elements of TAGS work 1-nguage committee to upgrade the language

together to support the engineering process. .o enable its use as a software specification
In a typical TAGS application. software language capable of supporting all ph.tses of
designers and system architects develop the software specification. The committee's work
softvare specification in IORL using the resulted in the second version (V2) of IORL
TAGS software engineering methodology, described in this article. During :he same
The IORL is entered into a central data base period, TBE started the development of
and edited as necessary. As the specification TAGS. TAGS contains over 200.,OO lines of
effort progresses, the diagnostic analyzer is source code and was developed using IORL.
used to tind IORL syntax and semantics however, during the early phases .t deveop-
errors and statically check f'or design errors ment various software development metho-
(ca message is referenced but not dology experiments were conducted. In
defined) The spec;fication Is baselined and 1983. the experimentation had progressed to
maintained under configuration mnagement. the point where a methodology committee

was 'ormed :o formalize the methodology.
When :he specification is compieted, the The TAGS approach (IORL. methodology.

lesisn is analyzed in a dynamic environment and part of the tools) was subsequentlv used
using :he imuiation compiler. The designer in a sequence of three pilot projects.
interacts .,ith ,he simulation compiler using
menus that are structured similar to the other The projects were ail flight softiare lair-
tools. Tihe designer describes the type of' craft and space) projects in whch the

, 7-

L L

software was embedded into TBE built o On the smallest project, the flight
hardware. Two of the projects were complete software was integrated with the tar-
projects ending with customer accepted sys- get hardware in less than one week.
tems. The remaining project was a competi-
tive Concept Definition Phase activity. This o On all three projects, the customer h
latter project will coitinue as a larger (over accepted and liked IORL. It was
60,000 lines of code) pilot program if TBE found that IORL drawings provided
wins the engineering development activity to an excellent vehicle for design review
follow. presentations and they were used

extensively during all formal reviews. "
All three projects used IORL, the metho- ev

dology, and the Storage and Retrieval tools of ".
TAGS in a batch environment. In this Contractual documentation require-

first on paper ments were met by incorporating the
envionmntIORLis ecodedIORL specifications into NASA docu-

then entered into TAGS by a trained opera-

tor. Any benefits of the software tools are mentation standards and MIL-STD

minimized but, the benefits of the use of the 483 B level specifications thus

language and methodology can be deter- demonstrating that IORL can be used

mined. The batch environment was necessary with existing Government standards.

because the projects were started before the In all cases, the full IROL specifica-

remaining tools were complete and existing tion was included in the specifications

in-house workstations were in use to com- as an appendix.

plete their development.
o The purpose of the pilot projects was

In spite of the environment, all three pro- to transfer the TAGS approach from
jects were judged to be highly successful. the experimental group developing
The reasons for this assessment are summar- TAGS to other software development
ized below: groups at TBE and the experiences

described above are not intended as
o Productivity rates experienced during proof of the superiority of the TAGS

the two complete projects were approach. However, given that most
judged to be twice what i BE would of the software engineers on these
have normally bid using a traditional projects used IORL for the first time
approach to software development, and that the full power of the
This result was determined by com- technique - interactive software
paring project productivity (overall workstations containing a full comple-
hours/line of code) with TBE's stan- ment of tools - was missing, it is safe
dard software estimation algorithms, to conclude that the TAGS approach

is a viable alternative to the current
0 On both complete projects, software software paradigm.

development was considered to be on
the critical path. In the case of both REFERENCES
projects, the software remained on
the critical path through the design I. Robert Balzer et a'.. "Software Technol-
phase (due to the methodology) and ogy in the 1990's: Using a New Para-
then the hardware became the critical digm," Computer, Vol. 16, No. 11. No.
path item. In both programs, the 1983, pp. 39-45.
software finished ahead of the
hardware. 2. Barry W. Boehm and Thomas A. Stand-

ish, "Software Technology in tne 1990's:
Using an Evolutionary Paradigm," Com-
puter, Vol. 16, No. 11. Nov 1983. pp.
30-37.

678

-..

RESUME

GENE E. SIEVERT

Gene E. Sievert is the Manager of Software Development at Teledyne Brown Engineering.
He is a member of the IORL Committee and Chairman of the TAGS Methodology Committee.
He has over 18 years experience in systems and software engineering of command and control.
real-time systems. Mr. Sievert received his B.S. from Ohio State University and his M.S. from
Case-Western Reserve University.

679

RESUME

TERRENCE A. MIZELL

Terrence A. Mizell (Terry) is a Systems Analyst in the Software Products Department at
, Teledyne Brown Engineering. Before coming to TBE, Mr. Mizell served as an Operations

Research Analyst with the U.S. Army Missile Command for 3 years. For 10 years previous to
this, he had been a college professor at several southern universities. He is an officer in the
Huntsville chapter of the IEEE and is professionally interested in design languages, operations

4 research, and statistics.

Mr. Mizell received an A.B. and M.S. from the University of Alabama, Tuscaloosa, and a
Ph.D from Emory University, Atlanta. Georgia.

680

'L%

RESUME

MIGUEL A. CARRIO, JR.

Miguel A. Carrio, Jr. is Manager of Advanced Programs at Teledyne Brown Engineering.
His responsibilities include the coordination of life cycle definitions with developmental and

- IV&V procedures, that when coupled with the proper support tools enable an efficient systems
,€ development process to occur. He is also the TBE STARS Program Director.

Prior to joining TBE Mr. Carrio's Ada expertise began as a member of the Army's
Software Technology Laboratory in 1979. He formulated and served as project leader on a
number of unique and innovative projects that were intended to establish and transition the
Ada Language Technology from DoD into industry and academia. Specifically, he was project
leader on the following:

1. Development of the Ada/Ed translator interpreter, Courant Institute, New York Univer-
sity.

2. AN/TSQ-73 Missile Minder Ada Redesign Case Study, Control Data Corporation.

3. AN/TYC-39 Message Switch Ada Redesign Case Study, General Dynamics Corporation.
I.h

4. Ada Methodology Study, SOFTECH.

5. Army Curriculum Development Effort, SOFTECH and Jersey City State College.

681

" "t

RESUME

TOM WALSH

Mr. Tom Walsh is Teledyne Brown Engineering's Director of Ads Training Activities. He
is currently engaged in the development of the TBE Ada courseware for dissemination
throughout the company, as well as outside of it. The courseware represents an extensive set
of Ada modules and texts extending from an Ada Fundamental Course to an Advanced Ada
Concurrently (Tasking) course. Mr. Walsh's background in software development is extensive.
He directly participated on the AN/TSQ-73 Missile Minder Ada Redesign Case Study as a
member, at the time, of the Control Data Corporation team. He is currently the TBE lead
representative in support of IEEE's Ada Program Design Language Working Group, and the
committees endeavor to establish industry Ada PDL Guidelines.

°!

*. ..

682

7%.- . .

i.5-"..'.-
L- . ..-. ,...-.. - ,- .. .,, , -,'. ;,''.' -" - " ".:-""- '- ' . '-,'- -_.-'-- '- "- '-," - .- ,"-,' -'-'- "2, .'--" "-" ' - -, % .5

SOFTwARE QUALITY

Raghu Singh
Space and Naval Warfare SYstems Command

-68

!X

RESUME -

RAGHU SINGH

Raghu P. Singh is a computer scientist with the Space and Naval Warfare Systems
Command. As Navy Assistant STARS Program Manager, he is involved in the day-to-
day management and coordination of Navy STARS program elements at the Navy
STARS Program Manager's office. His main interest and work lie in the area of software
engineering, software product assurance, and software metrics. His current address is:
Space & Naval Warfare Systems Command, Embedded Computer Program Office,
SPAWAR-03Y, Washington, D.C. 20363-5100; and can be reached at 202-692-3966 (AV .
222-3966).

,..°

684 5'

44w

am 0I~. - -%

-lot-

'4685

o 0

0

CC C D

F-

-E

686 --

E 3

U, %h"DIW -

00.-
"z: E

4' in mi-

'. ,- -" ' - -" . - . . .4'""""""""?. w ',:...'_'1.ri,:, . -- -.- -"4 -, ,--".-".- ,,... ..- ',-..,.o-' -. '-''',''-

j - -. _

CL

IL E

EuO0 o. -. '.

IL 0

III am, .

EL. a

03 u. C

iI87

687. -.

0

I--e e)5:

IL I

,,,, 0 u 00-

•o C/) (A

688 .,.

ocm

", ,'' '., .".."." ".".,-'_>.,% ." .., .' ._' ' ' ,, .'.,'""""' ''' ., .. '," ' ..". -,-. .. .-." .". ..".Z. ..".'. ,. ,, Z' ,,_. _ _ _ _ ..-."''",. ,,.-..,=,,,,'.,•.". :..- --.., ..-".. "...,?.'.
, -m ~n " d l -

LUll LI. ILILI LUL I~ AL~I ~ ~ .~.

b~.

0

a

N
,~

S
V

00
00

III
I
0

6 00~ -~z 0-
Id ~0 -f

CD
0wo~

III

LA

H
'S

68~

..

7.

memo

mll

U C

Z L.!

69

lii (2

E "0

4. 0 0 eW"°('I i ::: . I I : ,.

!!) •690

4-

. ' .

... '

%,.

-.-..

0 0 0 "a':

ILD

r ;r
EL

ME=
0 C

o "_ " ...

I"!))0"0:.-
IE e) ---.

II
:-.:-.I

:-'" lm "

"L ~ ~IL :..:

I I .::

,.- ~691"""' II

,

.%"

-. a . - . -. - .-.'
--

w- 0 .o, 0

" 0 WI 0

os om

cc _ 06

:6 9 ,

oo
0 '°

,0 ...
>c)%0s:u:--

: -. i ! :
. ' ." .-.-. , . ..; ._ -.' .-. : -, . . -' -' -.-. . , -, , .-. -. -. . -. 0..- , , .--, -, -.-.-2.. . . -. . , , .

1'1

0

ii ":""

- .-

"'" 693 l"
_A5

z .' -- "- -- -._L,' -" '_. -; -', % -.

HII

00

II

~0
_Da : 0

Z O-..v

,j .- 3:

694

• -- t . O
* '* -.-

4.- •

,.

- -.. L- l

' .

a

o 0 to a ' 1.
u- 7i &

CL CL.

wo C 0. j

Ise- --

C P 0 - :.

L 11%.-4."

ILI

-69
-.."2.

695 "'

c L

p0

•C

E in
00

'*"_ 0_ _

N- -

69 \'. *-

.. .-'.0

% , 0 0

00

00

697

i

'55V

-o a:e.

0 0
€ w *O)

Ako

• 0 0.-

a"

C (aLI cl, Iac

698..

698 *. ',-..

ipa

o xo
0 0

0 p L -o

cr. 0i e

o ~699

ON 3: ~ A~A.j

00

OS 0
E-

@0 C

Coo

0.

cc 0.

I.

.5. .5

0

0700

too..

00

11-

C C

0 0 lo

Z CL-
cmm G

Sc
0 = ,w

CL 0 3

0, C. -?C 0 0 *'

=CC C

m CL

* mm C

701

i

40.

0

r- :

V

7022

GOALS -CRITERIA RELATIONSHIPS

- C

Gua~ Crtra - .1

Acurc 0. 1 3a

Consitenc 0 0 S * a

Dat ACsmonity 0

Aoccesntto dquc

Ero Acc era ce 0

Commuin ficinComoaltp

Cotrmuntcatioenes

McmineeInepedec

Opatbiomonaiy

* DResometion Adequc V

Storagoe Eficiency

Structualimpiity

Iestumeqtacy

MahinehP~ Anedenacey

raebilitV

*~~~~~A R91ns84e dquc

*~
% -

.

04

0

*

CC

-CI

00

705

*R

SL CL

cc a

* 0

W .m

ar 0.j~ crQ
us..egUr

zE 44 CLIWEU3 O

706~

a..-

b'A

FUNDAMENTAL TECHNICAL ISSUES OF REUSING
MISSION CRITICAL APPLICATION SOFTWARE

J.G. Snodgrass
Staff Engineer

E-SYSTEMS, GARLAND DIVISION
P.O. BOX 660023

DALLAS, TEXAS 75266-0023
(214) 272-0515

Abstract

From the list of eight issues in the CBD Special Notice on Mission Critical Application Software
Reuse, it is not apparent that certain fundamental technical issues of reuse are adequately
addressed. However, the issues addressed in this paper could fit into either the
Specification/Design or Reusable Component Definition listed issues. This paper takes the position
following:

(1) The functionality of the component of reuse is a fundamental technical issue.
(2) To attain software reuse the focus has to broaden out to the entire system including

interfaces between system components and the movement of functionality among
components (hardware, software, manual procedures, forms, and people).

(3) The modifiability of software systems is very important to reuse. (In fact, modifiability and
reusability are considered the same by at least one researcher (Wegner 1984)).

(4) The development of a reusable software components environment requires fundamental
changes in the ways of developing software and thus will take many years.
The key elements in the difficulty of reuse (Figure 1) will be referred to in supporting the

four positions listed above.

Reusable Component Functionality Issue warrant the overhead of having it in a library and
The functionality of the component of finding it for reuse. What size of component

reuse is a fundamental technical issue. Cognitive should we attempt to reuse? The FORTRAN
psychology research in programming has recently subprogram has only been successful for certain
made a strong case for the thesis that experts types of functionality. A look at categories of
mentally reuse programming plans (e.g. a RUN- functionality can help explain why FORTRAN
NING TOTAL LOOP PLAN or an ITEM components have been successfully reused in
SEARCH LOOP PLAN) (Soloway 1984). The some situations and not others.
reuse of the programming plans and the func- The widespread reuse of FORTRAN
tionality of the plans seem to be what separates libraries has only been for physical or math f-.
experts from novices. For mental reuse, it is models, which are the slowest to change entities
clear that reuse of an Ada?RO language "case" modeled in software (See Figure 1, the Category
statement block is better than accomplishing the of Functionality Reused column). The func-
same functionality with a series of tionality dependent on human decisions is so
"if... then ..•else" statements. rapid to change that one cannot expect to reuse

But, for reuse in the sense of finding the without modification the software implementing
right "case" statement block in a library of reus- the functionality. Formalized abstract data struc-
able components, it is not clear that a "case" tures and processes (abstract data types) are rela-
statement block possesses enough functionality to tively slow to change, but FORTRAN has not

been adequate in implementing abstract data
'RO Ada is a registered trademark of the United types. The stability of the functionality over time

States Government fAda Joint Program Office) is a key factor in determining the difficulties of F

-7t

. o.,

...........

3:
46 41C

LUm
CAa

U L WA

Cm am IL*

0 C2a
IU2

0s0

IJ.a- ; a I.

lba" =, == a as 41
011. @ -PAU :. X

P cm

-a Ma

U.IL IL& I &6 c

III. PA. a

en M 4Q IL
*4 =vm Wioo5 W.A lbp 3 U6

M.4

'a'9 a" 2 w Waa = a" m gI0 u ~ s :M = "Ia

108

reusing the software providing the functionality. The basic research and concept formulation for
each was at least 5 years, followed by approxi-

-. Software Reuse Is A System Issue mately 4 years of development and prototyping of

To attain software reuse the focus has to underlying concepts, followed by 3 to 8 years
broaden out to the entire mission critical system extensive exploratory use and enhancement, and
including people, manual procedures and forms, finally approximately 2 years of preparation for

hardware, and software. In the situation of reus- release as a product.
ing software in the next version of the same sys- Cocisi
tern, frequent changes are the movement of Conclusion

functionality from special electronics, manual The reuse of software is a difficult problem
procedures and forms, and people to software. and a reusable software components environment
These are system level decisions and determine would take at least twenty years to become pro-
the functionality to be provided by the software duction quality. But, near-term payoff can be
and thus determine reusability. realized, while moving toward the long-term

reusable software components environment, by
Modifiability Is A Prerequisite To Reusability decomposing the problem into the types of

It is not reasonable to expect plug compati- changes hindering reuse. For exami te:
ble software components except in slowly chang-
ing functionality situations. With the continual (1) The Ada technology shows strong promise
environment changes beyond the control of the of significantly improving the software to

mission critical systems and the movement of computer hardware interface (change corn-
functionality from one component to another, puter hardware).
the best attainable reuse of application specific (2) The abstract interface techniques being
software is with modifications proportional to the used on the upgrade to the A-7E at NRL
differences in the existing components func- have promise in the software to special
tionality and the needed functionality. Thus, electronics interface (change special elec-
modifiability is a prerequisite to reusability. tronics) (Britton et al. 1981, Parker et al.

1980).

L. Reusable Software Components Environment (3) The information hiding techniques may
Development Issue soon be engineered for general use and

improve the software to software interface

The development of a reusable software (Parn8.5 1972. Parnas 1976: Parnas 1979;
components environment is at least as difficult as Parnas et al. 1983, Parnas et al. 1984).
developing the Software Requirements Engineer- The person, manual procedures, and
ing Methodology (SREM), UNIX Environment, manual forms functionality movement to
and Smalltalk-80 Environment. It took each of software are the changes which are taking place
these systems 18 + 3 years to pass from initial most rapidly and are receiving the least research
conception into widespread use (Riddle 1984). attention.

709

S..

- - - , '. ,..

.

REFERENCES (13) Goldberg, A. 1984. Smallulk - 80: The ,-
Interactive Programming Environment. . .-,
Addison-Wesley Publishing Company, ,.-

(1) Balzer, R. and Goldman, N. 1979. Princi- Reading, Massachusetts.
plies of good software specification and their (14) Green, C., Luckham, D., Balzer, R., Cheat-
implications for Specification Lanof aes. ham, T., and Rich, C., 1983. Report on a
Proceedings Specifications of Reliableassistant.
Software Conference, Cambridge, Mas- RAdge- sf-1st.
sachusetts, pp. 58-67. RADC-TR-83-195.

(2) Balzer, R., Cheatham, T.E. and Green. C. (15) Heninger, K.L. 1980. Specifying Software
(2)1Ba9zer3R. Cethame Te. g and Gen C: Requirements for Complex Systems: New

eTechnoloy in the 1990's: Techniques and Their Application. Tran-
Using a New Paradigm. Computer Vol. 16, sactions on Software Eigineering SE-6:2-13.
No. 11.. pp. 39-45.

(16) Mostow, J. 1984. Rutgers Workshop on
(3) Boehm, B.W. 1981. Software Engineering Knowledge-Based Design. SIGART

Economics, Prentice-Hall. Englewood Cliff, Newsletter. pp. 19-32.New Jersey. ""-
(4) Boehm, B.W. and Standish, T.A. 1983. (17) Parker. R.A., Heninger, K.L., Parnas, D.L.

and Shore, J.E. 1980. Abstract Interface
Software Technology in the 1990's. Using Specifications for the A-TE Device Interface
an Evolutionary Paradigm. Computer, Vol. Module, NRL, Washington, D.C., Memo * "
16, No. 11, pp. 30-37. Rep. 4385.

(5) Booch. G. 1983. Software Engineering (18) Parnas, D.L. 1979. Designing Software for
With Ada. Benjamin/Cummings, Menlo Ease of Extension and Contraction. Tran-
Park, California. sactions on Software Engineering SE-5:

(6) Buxton, J.N. and Druffel, L.E. 1980. 128-137.
Requirements for an Ada Programming (19) Rich, C. and Shrobe, H.E. 1979. Design of
Support Environment: Rationale for Stone- a Programmers Apprentice. Artificial Intelli-
man. Compsac 1980. pp. 66-72. gence: an MIT Perspective, edited by P.H.

(7) Curtis, B. 1984. Fifteen years of Psychol- Winston and R.H. Brown. The MIT Press, tji
ogy in Software Engineering: Individual Cambridge, Massachusetts, pp. 137-173.
Differences and Cognitive Science. Seventh (20) Rich, C. dnd Waters, R.C. 1981. Abstrac-
International Conference on Software tion. Inspection and Debugging in Program-
Engineering Proceedings, pp. 97-106. ming. MIT Al memo no. 634.

(8) Davis, C.G. and Vick, C.R. 1977. The (21) Shapiro, E.Y. 1983. Algorithmic Program
Software Development System. IEEE Tran- Debugging. The MIT Press, Cambridge,
sactions on Software Engineering. Vol. Massachusetts.

• ~~SE-3, No. 1, pp. 69-84. "'-,E3)No.es, ppA. 69-84. G(22) Soloway. E. 1984. A Cognitively-Based
(9) Downes. V.A. and Goldsack, S.J. 1982.

Programming Embedded Systems With Languages/Environments/Methodolgies.
Ada. Prentice-Hall. Inc., Englewood Cliffs. Proceedings of the ACM
New Jersey. SIGSOFT/SIGPLAN Software Engineering

(10) Doyle, J. 1984. Expert Systems Without Symposium on Practical Software Develop-
Computers or Theory and Trust in Artificial ment Environments, P. Henderson (Edi-
Intelligence. The Al Magazine, No. 5, No. tor). April 23-25. pp. 193-196.
2. pp. 59-63. (23) Zave. P. and Yeh. R.T. 1981. Executable

(11) Fairley, R.E. 1985. Software Engineering Requirements for Embedded Systems.
Concepts. McGraw-Hill Book Company, Fifth International Conference on Software
New York. Engineering: 295-304.

(12) Fickas. S. 1982. Automating the Transfor- (24) Zelkowitz, M.V., Shaw, A.C.. and Gannon.
mational Development of Software. Ph.D J.D. 1979. Principles of Software Engineer-
Thesis. Computer Science Department, ing and Design. Prentice Hall. Englewood
U.C. Irvine. Cliffs. New Jersey. pp. 9-11.

710

...
::.-.1-...... :.:...-..:".'-. .-". . ..:.-..".-. - " " "

BIBLIOGRAPHY (6) Parnas, D.L., Weiss, D.M., Clements, P.C.
and Britton, K.H. 1983. Interface
Specifications for the SCR (A-7E) Extended

(1) Britton, K.H., Parker, R.A. and Parnas, Computer Module, NRL. Washington,

D.L. 1981. A Procedure for Designing D.C., Memo Rep. 4843.

Abstract Interfaces for Device Interface (7) Parnas. D.L., Clements, P.C. and Weiss,
Modules. Fifth International Conference D.M. 1984. The Modular Structure of
on Software Engineering, pp. 195-204. Complex Systems. Seventh International

(2) Parker, R.A., Heninger, K.L., Parnas, D.L. Conference on Software Engineering. pp.

and Shore, J.E. 1980. Abstract Interface 408-417.

Specifications for the A-7E Device Interface (8) Riddle, W.E. 1984. The Magic Number I.
Module, NRL, Washington, D.C., Memo Eighteen Plus or Minus Three: A Study of
Rep. 4385. Software Technology Maturation. ACM

(3) Parnas, D.L. 1972. On the Criteria to be SIGSOFT Software Engineering Notes.

used in Decomposing Systems into Vol. 9, No. 2, pp. 21-37.

Modules. Communication of the ACM 12: (9) Solway, E. 1984. A Cognitively- Based '--

1053-1058. Methodology for Designing

(4) Parnas, D.L. 1976. On the Design and Languages/Environments/Methodologies.
Development of Program Families. Tran- Proceedings of the ACM
sactions on Software Engineering SE-2. SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Develop-
(5) Parnas, D.L. 1979. Designing Software for ment Environments, P. Henderson (Edi-

Ease of Extension and Contraction. Tran- tor). April 23-25. pp. 193-196.
sactions on Software Engineering SE-5. pp128-137. (10) Wegner, P. 1984. Capital-intensive

Software Technology. IEEE Software, Vol.

I, No. 3, pp. 7-45.

711

r

. .. . *. -..

RESUME

J.G. SNODGRASS

Mr. J.G. Snodgrass has a B.S. Degree in Mathematics from Arkansas State University, a M.S. 6

Degree in Mathematics from Texas A&M University, a M.S. Degree in Computer Science from South- ,.

em Methodist University, and is currently working on a dissertation for a Ph.D in Computer Science at
Southern Methodist University. Mr. Snodgrass, a member of the technical staff, is responsible for tran-
sitioning the Garland Division of E-Systems to Ada-based software engineering environments and for
research projects utilizing Ada and artificial intelligence technologies to improve software quality and
software engineering productivity. Also, he participates in 1) new business and proposal activities asso-
ciated with Advanced Software Technology and 2) the Reusable Software and Knowledge Engineering
Thrusts of the Software Productivity Consortium.

Prior to joining E-Systems in early 1983, Mr. Snodgrass was Chief of Engineering Software
Development for General Dynamics at Fort Worth, Texas. In this position he managed a group of
twenty software engineers and provided technical leadership and consultation on proposals and software
development projects. The applications included J73 compilers, software tools, avionics algorithms, fac-
tory automation simulation, Ada methodology, and factory energy management automation. Also, he
led technical volumes of proposals in areas of Tactical Campaign modeling, Modem Programming
Environments, support software for F-16 aircraft subsystems, and Ada technology.

Prior to assuming management responsibility in 1980, Mr. Snodgrass held positions of technical
leadership in modern programming environment projects and C?31 system IR&D projects. Prior to
assuming technical leadership responsibility, Mr. Snodgrass was involved in designing, implementing,
and testing software systems for C?31, F-16 weapons system, and electronic warfare equipment evalua-
tion applications.

(j. i

}I

...

ZuCZ

-"'U-

z-o
cn~
C4a

lb-

713,I -

up.

,.u *

Z =
SM CJ M

#7J 0. . ..
a. 2 - 9C

u 4)C.
LA C) I-

Z SA . SM

uOu. a ...
waan ci.

LUU
I--U W= aj6

'3 Ii

W6 I-
0 0 0

its1OlA

714-Ia

8* A

-II

k -MA

wjL
Cc

03 12 1

LU I z A1 A
WC

CZ Cm

CL.
I..

~

0 .
u

A-
~

.J CID

LII
LLI Lu

LAW2LAJPflE0" wvi 11111

715


~~~~:~~L In ~ ~ ~ 2T ~~~ ~J r - a

0- 1-

W*( -j c

caa
a.M a,2CA OC CM 3

z ;.@ -
-% Cc

ca cc U, cc ~i

a- a C)
0-I = W.

U,

Cos w z
= O

C2 -j

Ca Cc 0

L6 CC F



n .

P-

WII

III I.-
12I

42

cm~~l'
ua

aa.1.1.10 6

I- LOS.

-li - C3

UU .1 W.g

OL U4

01.1.1 WI
0

717 S



CAy

1MW 6u C
*~af zU@

C.3

L16U

U. z-~4U

C.) 0 = a

Z ~ ~ L - u~4' I-- 0 ca 1
0 0 CO 0.a.

(CA 2- aU LU

0. 0 CA. z

L- ca. LL
VC LU LU =j U'Cc ~ I Ec4c- -0 -

CCZI I-W

LII co 4LIJC.. LU ZI2~
C 1 UW CL. O

CC .jLU6
CLVI. = LUz

cn@ >-= O ul L

ca C=LU L = W f L

z~ 0 4! UL C 3

0 0

z 2 S0 =r
Lfijca :. z 718L

-. = 71E



Iwwi

caa 40

-Ca00 LU

0c LU 4
>:=

~CD LU CL .

C.3 cr.

LA 0nL.

CL. 0 C
CJg c a

LAW ~wCJ LJ c
'U

V)) 4.

hj iI . 0i 0

9.J cc .r Fca4



RESPONSE TO THE TRI-SERVICE WORKING GROUP WORKSHOP
REUSABLE COMPONENTS OF APPLICATION SOFTWARE

CORPORATE SOFTWARE EXPERTISE IN THE AREA
OF SPECIFICATION/DESIGN

J. S. Squire
Westinghouse Electric Corp. DESC

A bstract

The Westinghouse software capability provides a strong combination of software development experience
and software support environment design. Westinghouse has a ten year history as a leader in programmable
signal processors (PSP) as well as avionics systems design, development, and integration in such systems as
EAR, F16, and B-lB. The PSP series (with users such as MiT/Lincoln Labs, ERIM, and Grumman) and
.Ada ?'0 support environment development (for VHSIC Phase 1 to support advanced multiprocessor system
design) have established Westinghouse as a leader in the field of real-time systems development.

Software Development Experience Ada. Recent JOVIAL support environment
experience includes development and integra-

WEC is well-versed in developing tion of object code file managers, relocatable
operational system software for a variety of loader/linkage editor, assemblers, simulators
signal processing (SP) applications in a and automatic software documentation pack-
manner consistent with top-down, structured ages into a cohesive user-oriented package
software design and test techniques as interfacing with host manufacturer's corn- -.

defined in MIL-STDs 483 and 1679. Within monly supplied support tools (e.g.. editors.
applications of radar, sonar, EW, and image file managers, etc.). Software maintenance is
processing, we have demonstrated our exper- enhanced throughout the life cycle via exten-
tise on such projects as APG-66, B-IB, sive software module documentation, cross
APG-68, ALQ-131, ASPJ, and E-3A. Exten- reference listings, and software RN genera-
sive experience in Software Engineering prac- tion for traceability. Software reliability is
tices has enabled WEC to develop a con- ensured through a combination of modern
sistent approach to the management of software engineering practices coupled with
software programs. All software efforts util- firm management disciplines, including:
ize the same Software Management Guide
(used in accordance with Government direc- - configuration identification.
tives and/or contract requirements) which
forms the foundation of any Computer Pro- - change control.

gram Development Plan (CPDP) required for - status accounting,
any specific contract. Our software develop- - configuration control centers, and
ment approach measures each phase of
software development against the require- software control centers.
ments as shown in Figure 1. This ensures
Computer Program Configuration Item Westinghouse has adopted the modern
(CPCI) baseline control and assures a quality software engineering practices (structured

of excellence in the products developed programming, chief programmer teams.
structured walk throughs. etc.) necessary to

Software Support Environment Design complement efficient real-time operating sys-
tems development.

Westinghouse has extensive experience
in the development of support tools for pro- Over the past 15 years, we have P-

duction software environments based on developed a number of system software -7
FORTRAN, JOVIAL. and most recently, development environments which have been

- -.-. -. .......... ,.., . . ........ o.•..o. t..o.,lp*-.-° - -o.• .. o•..~.•



as j~ il

-Ii-

fil Ill.Il



used to generate code for real-time operating DEC Ada compiler) in use on commercial
systems applications and the maintenance computers, and, Westinghouse will continue
thereof. Westinghouse developments in the to acquire these compilers as they become
system software area have parallelled available. Since 1979, Westinghouse has ]
advances in computer science technology, been actively involved in the development of
These include the compiler-linker-loaders for an Ada compiler (MIL-STD-1815A) for the
systems such as the F4 and E3A. Presently, MIL-STD-1750A Instruction Set Architecture
Westinghouse is working on state-of-the-art (ISA). This VAX/VMS hosted Ada compiler
systems which include not only compilers- is designed and implemented to provide good
linkers-loaders, but additional software software engineering productivity for the
development facilities for various levels of 1750A target computer as well as the West-
simulation, debug, and maintenance. The inghouse VHSIC Signal Processors (VSPs).
simulation capabilities range from register It is an integral part of the Ada support
levels in object machines to system and data environment within the Integrated Design
flow levels among machines. The program System (IDS) that is presented in this pack-
development capabilities include HOL level age.
debugging facilities which provide for real-
time interactive program monitoring. The As a result of the IDS development on
maintenance capabilities include automatic Phase I of the VHSIC program and associated
configuration control management aids, such s e teh pograand ast e

as te Wstighoue Atomtic eviion software technology research Westinghouse
as the Westinghouse Automatic Revision has embarked on a program addressing not
Control System (ARCS) which controls the only the Ada program support environment,
manner by which one may revise code and but also the total mission support environ-

automatically updates all pertinent files and ment as related to large, diverse, sensor-

control mechanisms. Most of these facilities based systems. This Westinghouse concept, 1'

operate from common data bases. Many of the Mission Design Support System
these facilities are data base driven. An (MIDSS), consists of a number of state-of-
example is the Westinghouse compiler facil- the-art software programs and proposed con-

* ity, wherein more than one language corn- cepts developed in an Ada environment and
piler utilizes a machine definition data base to integrated to form a system design automa-
generate code for a single object machine. tion package that is usable by operations
At the same time. a single compiler utilizes analysts, system architects, Ada program-
the data base which contains many object mers, and more. The software ranges from
machine descriptions to generate code for the top-level Mission Design Language
various machines. through the basic hardware interface or signal

processing procedures. The Directed Graph
Many of these techniques are currently Methodology (DGM) is the basis for the

being utilized in the development of an Ada Mission Design Language concept which
environment associated with the ongoing allows a user to interface to this multi-level
DOD sponsored VHSIC program. Westing- environment at any convenient design point
house has been actively involved in Ada and hierarchically traverse to each successive
since the formation of the High Order level of detail. DGM and its tool-set is the
Language Working Group (HOLWG). At philosophy/methodology that is presented in
this facility, there are currently 6 Ada corn- this package.
pilers (including the latest release of the

-. . . . . . . . . . . . . . . . . . . .

:: "23

.".



SPECIFICATION/DESIGN
THE WESTINGHOUSE INTEGRATED DESIGN SYSTEM

In support of the VHSIC Phase I pro- (1) Selection of an algorithm
gram, WEC developed an Integrated Design
System (IDS) that assists the systems analyst (2) Representation of the algorithm by a
and software engineer in developing a Signal data flow graph--consisting of nodes and
Processing (SP) application from the require- arcs,
ments level to the actual coding of the algo-
rithm. WEC has installed and effectively
used the tools of the IDS within its software (3) Adaptation of the algorithm to DGM,
development environment. The IDS is pic- and
torially represented in Figure 2 in which the
Directed Graph Methodology (DGM) is (4) Coding of the nodes in Ada
essentially the "focal point" of the IDS.
DGM's integrated tool-set is pictured in These steps are shown in Figure 3 and
Blocks 1 and 3 of Figure 2 and includes the demonstrate how DGM is used within
following: (1) DGM Editor, (2) DGM WEC'sIDS.
Library Manager, (3) DGM Plot Package, (4)
DGM Translator, and (5) DGM Simulators. (1) Selection of an Algorithm
The association of DGM with the remaining
tools of the IDS is pictured in Blocks 2, 4, The system designer begins by defining
and 5 (not presented in this package). system requirements for a SP processing

mode(s) he is attempting to analyze as pic-
DGM supports top-down structured tured in Block 1 of Figure 3. The

design techniques, is used on-line, provides algorithm(s) necessary for the execution of
automatic documentation, and generates code the mode are established. Next, a top level
(Ada package specifications) during the block diagram of that algorithm is produced
Design/Development Phase of the Software to some level of refinement (detail). It is at
Development Process (as shown in Figure 1). this point that the algorithm can begin to be
A description of how DGM supports the represented as a data flow graph.
development of this software follows.

(2) Representation of the Algorithm by a
Data Flow Graph

Design Philosophy Westinghouse After the selection of an algorithm, the
Integrated Design System next step in the development of the software

is to group logically related functions and
WEC has developed an Integrated subroutines into entities that will be coded in

Design System (IDS) that assists the systems Ada as packages. Block 2 of Figure 3
analysts and software engineers in transform- represents this step of the
ing an application to Ada/SP source and in design/development process. After identify-
documenting it. This source can then be ing the entities (which are called nodes in
compiled by the Ada compiler. The IDS pro- DGM and packages in Ada), the data flow
vides the necessary tools for designing archi- graph is drawn.
tectural configurations and allows the analyst
to evaluate these architectures against real- (3) Adaptation of the Algorithm to directed
time SP requirements. This design philoso- Graph Methodology
phy has been applied to radar mode(s) and

-, benchmarks. In implementing this philoso- DGM is a means of specifying a SP
phy and designing/developing application application in a distributed system environ-
software, 4 steps are generally followed: ment. Its menu-driven interactive tools

724

-:: ::



a - . - - - - a .7 .- 7 F. - T. -777r----r-r--r----

I1:: 11

-i i- l l ,-,.

all I  z-'

Jill 1,,,, 15-"~jD "' Si i (N

h 1 - ----

i I I ::'

I,..

-,.. .. ....... .,..... ... . .,.-. . .,.-.,..,. . ... ,. . ... ...- ,........,...... .-... ......... . ... , . . .:::- ,.

"_.".._. i."-._.'.. .- .",- .- '."."."'-''-'.'-''L. -"'--*..'-'..-'-" _'" --'.'L. ." '.' '.-'."¢ ¢ " . . .''..'''a. 'a . * '. .2 .*. '.. -.* € , i,' _'
"



.11! ~,i! !
Eu I i nw'+: i

* GI Uil

"ie + I 'p

• l+'i t1 Ij'I
I ...-.

K3; i i f ii,, , +,.:

118 'ii U

Ii
i  ::::::::

I 1. .. 13 .6 d 'S

Ii \
, , , li', " II) " :I :

72 a - -. U-

S 3* -*
I~l lIi " / l i/ t.t I i l-l •i - . , +," . . . . . k . . . . . . . .3. . . . "I

I I +II I I I , 1- \ I+IIIt " IIIIII II++i* "] 1 l "
III i l l II Ii



r 7.

enable a user to enter textual data on the variables enable communication of informa-
VAX describing the requirements of the tion between nodes, the graph's control pro-
graph (node and queue attributes, etc.). gram, and the outside world. Several data

_ Once the information is entered and edited, files are created by the DGM Editor. These

it is then transferred into a translator whose files summarize the attributes of the graph,
output is a collection of Ada routines and its connectivity, data flow, queue and node
transport tables. Block 3 of Figure 3 shows requirements, and provide output files for the
how the system architect describes his DGM Translator, ECSS II System Level
requirements using DGM and emphasizes Simulator, Ada compiler, and Plot Package.
the point that no programming tasks are The automatic generation of these files is a
required at this stage. cost-saving feature of DGM; and the data

and code that is created by these files assist
(4) Coding of the Nodes in Ada in the documentation, translation, and

specification of SP applications. Thus, DGM
Nodes are then coded as Ada packages, reduces programming costs.

as diagrammed in Blocks 4a and 4b of Figure
3. Prior to the coding of each node, the sys- Throughout the System Design/
tems programmer maps the SP requirements Development Process, simulation plays a key
to the SP function (which can be broken role in the verification/validation of the top
down into an instruction or collection of level design down through the gate level
instructions (Ada procedures). These instruc- abstract design. At the functional simulation
tions are defined in Ada as procedures and level, there exists two (2) simulators for the
can be invoked by a procedure call statement. DGM Graph--the Data Flow Simulator and
At present, 80 generic instructions have been the Functional Code Simulator, as shown in
defined in Ada as procedures (see Vol I of Block 3 of Figure 2. Both simulators allow
the enclosed manual) and can be used for the user to simulate the data flow of the SP
radar, sonar, EW, and other SP applications, graph which has been defined via the DGM

Editor. Both verify the queue attributes and

The actual implementation of the SP firing rates and check for deadlock condi-
instruction occurs when the microcode asso- tions. The primary outputs are statistical
ciated with the instruction is executed. The results of the execution of the algorithm.
support package specifies the type of proces-
sor to be used for processing the node, In summary, DGM provides us with a
defines the data types used, and lists all the means of specifying the entire system even
functions and procedure calls from the SP before the coding of the modules starts; it
library that will be used in the implementa- supports the development of highly modular
tion package, systems. In most software development

methodologies, integration and maintenance
Implementation of the programs are both difficult and costly.

With DGM techniques and separately com-

DGM clarifies system requirements by piled units in Ada, software integration is
constructing data flow graphs out of SP block greatly facilitated. Several software engineers
diagrams. Nodes, queues, graph variables can write code with a minimal amount of
and optional mode control programs define a interaction; they can also compile small por-
pictorial representation of an application. tions of the program separately. Once all the
The vertices of the directed graph are called packages for a given mode are coded. DGM
nodes and the edges are called graph queues. will generate the necessary tables and
Each node on a graph represents a processing specifications to connect all the entities
element of the graph and can be defined as together and ensure synchronized execution.
an Ada package or subgraph.A graph queue The impact on software maintenance is also
transports either data or synchronization favorable because if changes are made to any
pulses between two nodes. Through the of the packages, the rest of the system com- -
input and output queues, the node communi- pilation units will not be affected.
cates with other nodes in the graph. Graph

727

r



•-. . * - . .. %

0 cc

o m,- I I I I I i

.C.°°

$at $zweI it li

a a

CdE

17 1 ::::-

,Q z

I- -

-i Ii

*-2"-. 
.. " ,.

.728

U,- - ' 
o

['''""'-'' "''''..' ...". ." ' .' ' ".'" .' ' ."' . ",'-"" " "-' ' ".'." '" '.'. .'.2""e - ''.2 ',- ,2 5 ""-.'- Z

,-. .;,.' ,:--, -'<,,- """ . . . . . " .. . . .. . . . . ..



Table I provides a summary of the Directed Graph Methodology (Editor
tools within the IDS by item name, descrip- and Library Manager), and
tion, function, developer, % completed, host DGM Simulators (Data Flow and Func-
language, and host computer. Many of the tional Code).
tools (in their current state) have been t-C,
delivered to the Government under the
VHSIC Phase I contract. These tools At this time the cost and/or licensing of
include: the the ECSS II Simulator from FEDSIM) is

still being reviewed internally at Westing-

- 1750A macro simulator house.

- Signal processing procedures (macro
library)

7-19

I .

.I ..

I...'

.........

. . . ..

. . . .. . . .



RESUME

Jon Stuart Squire
Manager

EDUCATION

BS. Electrical Engineering Univ. of Michigan, 1960

MS, Electrical Engineering Univ. of Michigan, 1962

MS, Mathematics Univ. of Michigan, 1963

Computer Science Studies The Johns Hopkins Univ., 1971. 1972; Univ. of Maryland 1979,1980

EXPERIENCE I-

1979-Present
Westinghouse Electric Corporation Defense and Electronic Systems Center Baltimore,
MD, Manager, Software Engrg.

1970-Present
Manager, Software Engineering responsible for DESC software standards and procedures,
compiler, assemblers, automatic documentation, computer-aided system and related
software areas. This included compilers targeted to the MIL-STD- 1750 Instruction Set
Architecture for Ada, Jovial and Fortran Languages.

1969-1970mApplication and Operational Software, Systems Development Division; Supervisory
Engineer. Responsible for coordination of computer-aided design effort for this division.
Responsible for training, staffing and line supervision of operational software develop-
ments such as 857G avionics computer software, F-I5 radar director software, SAN-
DRAM weapon delivery software.

1966-1969

Advanced Control Data Systems. Fellow Engineer. Group leader responsible for
advanced computer organization development and system software programming for
Aerospace computers. Specified the organization of a general-purpose satellite-borne com-
puter being built for NASA. Program Manager for NASA ON-BOARD PROCESSOR
software including assembler, loader.

1963-1966
Westinghouse Electric Corporation. Computer and Data Systems. Senior Engineer. Prel-
iminary design of SOLOMON software. Research on numerical techniques for advanced
computers. Program manager for development of NELIAC compilers for WEC 2402
computer and IBM 360 computer. Director of software development for Aerospace WIP
and ABC computers. c

730

DRA wepo deivey oftare .

. . . . . . . . . . . . . . .



1961-1963
"* University of Michigan Research Institute, Assistant Research Engineer. Developed a

translation algorithm for use in producing code for the Multiple Processor Computer.
Developed machine organization of a Multiple Processor computer.

1961-1963
University of Michigan, Instructor, Department of Mathematics.

1960-1962
University of Michigan Research Institute, Programmer-Analyst. Development of a
Powerful Problem Oriented Language and Translator.

SOCIETIES

Institute of Electrical and Electronics Engineers

IEEE Electronic Computer Group

Association for Computing Machinery

PUBLICATIONS

(1) "Iterative Circuit Computers," Coauthor, Computer Organization, Spartan Books, Inc.,
1963.

(2) "Programming and Design Considerations of a Highly Parallel Computer," Coauthor,
AFIPS Proceedings, SJCC, 1963.

(3) "A Translation Algorithm for a Multiple Processor Computer," ACM National Confer-
ence, Denver, Colorado, 1963.

(4) "An 11 Cryotron Full Added," IEEE-Transactions. Electronic Computers Correspon-
dence, 1962.

* (5) "Techniques for Developing Compilers for IBM System 360," Association for Computing
Machinery, Symposium, Baltimore, Maryland, 1965.

(6) "Advanced Concepts of Computer Organization," IFIP Congress, New York, 1965.

(7) "New Techniques to Obtain Ultra Reliable Digital Systems," Westinghouse Technical
Report, 1967.

(8) "A General-Purpose Onboard Satellite Computer," Coauthor, Westinghouse ENGINEER,
Vol. 29, 1, 1969.

PATENT DISCLOSURES
Optically Alterable Optical Storage Device, 1964.

MOS FET Permanent Repair Physical Device, 1967.

Digital Logic Simulation, 1969.

Computer-Aided String List Generation, 1970.

MOS CELL Layout, 1969.
731

• " .. ,2€._- ,,_. -, ..- . ... .. . .... . . . . .. . .



BOEING MILITARY AIRPLANE COMPANY (BMAX)

Earl T. Startzman
Ada Information Management System

&7

733



BOEING MILITARY AIRPLANE COMPANY (BMAC)

RELATED CORPORATE EXPERTISE AND CONTRACTS
k

BMAC HAS BEEN INTIMATELY INVOLVED IN THE DESIGN AND DEVELOPMENT OF
MAJOR WEAPONS SYSTEMS EMPLOYING REAL-TIME BUS-ORIENTED DISTRIBUTED MUL-
TIPROCESSOR ENVIRONMENTS UTILIZING HIGH ORDER LANGUAGE (JOVIAL) APPLICA-
TIONS FOR THE LAST 10 YEARS.

o BMAC has specified, procured, validated, and maintained JOVIAL compilers and maintained a
comprehensive software support system for. ie development and maintenance of large-scale,
real-time avionics on the IBM 370. BMAC has also installed and maintained a JOVIAL J73/I
Compiler on a DEC-10 under TOPS-10 and has written a code generator for it.

0 BMAC has specified, procured, validated, and used JOVIAL compilers with multiple code genera-
tors for major military contracts including: B-52 Offensive Avionics System (J3B), General Sup-
port Rocket Systems (J73/I), Inertial Upper Stage (J73/I), B-lB Avionics (J3B), and AWACS
(J3).

o BMAC has developed a comprehensive integrated support software system which provides facili-
ties for development, test documentation, and maintenance of software for embedded computer . -

systems.

o BMAC personnel participated in the Ada language definition cycle as members of the Phase 11 Air
Force Evaluation Team. Boeing also participated in the Phase II Ada test and evaluation, submit-
ted several language issue reports and presented four papers at the Ada Test and Evaluation
conference.

o BMAC is the prime contractor for the Ada Integrated Management System (AIMS).

0 BMAC has over three years of hands-on experience with actual MIL-STD-1750 hardware, includ-
ing flight testing of actual avionics systems. Additionally, BMAC is a charter member of the 1750
Users Group and participated in the original definition of the MIL-STD-1750 ISA. - -

o BMAC has developed a suite of benchmark tests for Ada which evaiua:e MIL-STD-1750A code
generating effectiveness of Ada compilers.

o BMAC, through its IR&D, is in the process of developing a family of MIL-STD-1553 A/B-based
terminal controllers for the MIL-DTD-1553 A/B avionics bus.

The following BMAC contracts include the development of significant quantities of Mission Criti-
cal Applications Software, support software and test and maintenance software.

I

r

-34.



Advanced System Integration Demons- management avionics for the B- 8, an natural
tration (Pave Pillar) Contract No. extension of Boeing efforts on the B-i avionics
F33615-82-C-1902) program.

The Advance System Integration Demons- The latest technology equipment being
(SD prgran m desigatdn Paem Pillar, incorporated into the B-1B, such as state-of-the-tration (art synthetic aperture radar, capitalizes upon the

consists of the following projects: the Advanced w n b po d e eASyst m A v oni s (A A) p oje t, w ich ill work now being perform ed under the B-52 O A S. ..-,.
contract. With two production readiness reviews,

define, design, integrate, test, and evaluatedvained avsionc sytem coeptsna test edt successfully completed, the first flight date of 31advanced avionic system concepts in a test bed December 1984 is expected to occur as
facility; the Integrated Flight Demonstrator scheduled. 1cc
(IFD) project, which will integrate and evaluate shue
configurations of these advanced concepts in a B-52 Offensive Avionics System (OAS) (Con-
flight test environment; and the integrated tract No. F33657-78-C-0500)
Communications/Navigation/ Identification
Avionics (ICNIA) project, which will integrate In the B-52 Offensive Avionics System
communication, navigation, and identification (OAS), Boeing is replacing the low reliability ana-
functions across the 2MHz to 2GHz spectrum. log bombing and navigation system originally
The ASID program goal is to define, develop, installed on B-52G/H aircraft with high reliability
and evaluate new approaches to integrated solid state digital equipment that provides the
avionic system technology that will achieve benefits of greater accuracy, smaller size, reduced
improvements in using ground-based evaluation weight, and decreased maintenance costs.
facilities and an airborne test bed in performing The OAS consists of a set of integrated
test and evaluation of advanced avionics system weapon control and delivery and navigation sub- L--

. concepts. Concepts to be defined, developed, and systems linked to three digital avionics control
evaluated include the integration of information units (ACUs) by a MIL-STD-1553A data bus. In
from multiple sensors and subsystems toward the addition to improving reliability, it significantly
end of functional automation, manageable pilot improves performance and provides a nuclear

* workload more effective and survivable weapon hardened system, including the weapons release
systems through the application of advance tech- train. The ACUs perform all navigation and
nology. weapons delivery computations and control com-

munications between the various OAS equip-
B-I Avionics (Contract No. F33657-72-C-0600) ment. Boeing has developed and delivered the N.

In April 1972, Boeing won the Air Force operational software ground maintenance
contract to design, develop, integrate, and test software, simulation software and mission data
the avionics system for the B-i bomber. Initially, preparation software. This program is on
the B-1 avionics system included navigation and schedule and has met all scheduled milestones.
weapons delivery, mission and traffic control,
controls and displays, the Avionics Control Units Advanced Technology Cruise Missile Study
Complex, and Stores Management System. This (ATCM) (Contract No. N00019-78-C-0195)
responsibility was later expanded to include the The objective of the ATCM study was to
design, development, integration, and test of the take postulated threat and concept data and, util-
defensive management subsystem, and addition- izing forecasted technology, devise cruise missile
ally, responsibility for the total avionics integra- concepts. These concepts were tested in single
tion and installed performance of the radio fre- engagement analysis and those that performed
quency surveillance and electronic countermeas- well were evaluated in a total force effectiveness
ures subsystem. During this period, Boeing per- analysis. Technologies which contributed to the
formed a primary role in establishing and coordi- effectiveness of each of the designs were then
nating the complex interface activities between prioritized and a technology plan was developed
associate contractors. for each.

B-IB Avionics (Contract No. F33657-81-C- Air-to-Surface Technology and Integration
0212) Study (ATS) (Contract No. F33657-76-C-3150)

In October 1981, Boeing was awarded a Boeing conducted the ATS study that has
contract to develop offensive and defensive the objective of assessing the value of advanced

735

S*. . . . . . .•. , * .- . . . . .......-.



.-- 77-- -;-'777-7 - 7. 7Z

technologies to mission capabilities and overall included the integrated system components of
system effectiveness of future air-to-surface, all- weapons, avionics, airframe, and their interac-
weather, manned strike fighters. The study tions.IN

ILI

36



RESUME

EARL T. STARTZMAN

Senior Software Engineer

EDUCATION

BS, Mathematics and Physics Friends University, 1968

EXPERIENCE

Since 1981, Mr. Startzman has been the Ada focal point for Boeing Military Airplane Company,
Wichita, Kansas. During the past year and a half, he has participated in the formulation of BMAC high
order language strategy. He has developed specifications for a J73 compiler code generator targeted for
MIL-STD-1750A as part of the B-IB Standards program. He has currently advised other BMAC project
organizations in the utilization of Ada for their particular application. Currently he is principle engineer
of the Ada Information Management System Contract (No. F33615-83-C-1052) sponsored by
AFWAL/AAAF. In this capacity he has supervised the procurement of an Ada compiler targeted for "
the MIL-STD-1750A processor.

From 1971 to 1981, Mr. Startzman was employed by NCR Corporation in Wichita where he has
involved in the following types of activities:

o Design and implementation of operating systems for mini- and micro-based commercial data pro-
cessing equipment.

(- o Design and implementation of a command language for a microprocessor-based operating system.

o Design and implementation of device drivers for synchronous and asynchronous devices.

o Devised architecture for dynamic resource allocation in connection with a distributed processing -
environment. L..

o Chairman of Corporate Committee for introduction of extensions to the BASIC language.

o Development of corporate-wide standards for programming languages and definition of a common
logical interface for all random-access media used within NCR systems.-.

7 37

. . . .. " " -. ..



" • . a . - -

Tse-Wayne Mah

Software Development Engineer

Education: , >

BS, Computer Science, Wichita State University, 1981

Experience:

Mr. Mah has three years experience at BMAC where he has designed and implemented software for the
Center of Gravity/Fuel Level Advisory System for the 8-52. He has worked on firmware monitors for MIL-STD-
1750A and Zilog Z8000 processors and has developed software to operate a Bus Interface Unit as a
terminal/controller on a MIL-STD-1553A1B data bus. Worked on implementing the Single Processor
Synchronous Executive on a MIL-STD-1750A processor system. He has supported development of an
interface for an emulation of an AP101C on a Nanodata QM-1 with a MIL-STD-15S3A/B data bus. He has -,.
completed the Language Control Facility's JOVIAL (J73) programming language course and produced code
in JOVIAL (J73) targeted for the MIL-STD-1750A processor forthe B-1s benchmarking effort.

Reviewed the design of the Ada compiler targeted to the MIL-STD-1750A being produced for the AIMS
project. Coordinated and attended the first Ada language course at Boeing. Worked on implementing an
Ada code generator for the VHSIC 1750A. Currently working on using Ada in a lab model of an avionics
system.

Prior to his employment at Boeing, Mr. Mah held various software development positions with NCR
Corporation, Sedgwick County Department of Public Works, and United Computing Systems while he was

* obtaining his computer science degree from Wichita State University.

Projects he worked on prior to graduation include:

0 Maintenance of an operating system for a small business computer.

O Design, implementation, and maintenance of a variety of software on a Wang 2200 series
minicomputer. Also, day-to-day supervision of use and operation of the system.

a Assisted system analysts in maintenance and fixing problems in an operating system running on
an IBM 360/365.

Honor:

Wallace Scholar, Wichita State University, College of Engineering, 1977

Third place in Wichita State University, College of Engineering, Scholastic Tournament and Design
Competition in the area of Computer Science, 1977.

Member first place team in ACM programming contest for high school students, 1977.

Other:

Programming languages used extensively include Ada, various assembly languages, JOVIAL, FORTRAN,
BASIC, and PL/1.

Member SAE AE-9, Committee on Aerospace, Avionics Equipment & Integration. "

738

,%k

. . ...........



A- -.-.

K'

Donald W. Higgins
Senior Software Engineer

Education:

BS, Computer Science. Troy State University, 1977

Experience:

Mr. Higgins joined the Boeing Military Airplane Company in May 1982 and has been involved in the design
and implementation of digital autopilot systems and avionics ground support systems.

Mr. Higgins has been following the evolution of Ada for the last two years and was a member ofthe Ada
Information Management System (AIMS, contract sponsored by AFWAL-AAAF, No. F33615-3-C-1052)
research team which investigated the feasibility of Ada for the implementation of real-time, embedded
systems.

Mr. Higgins has completed the classroom requirements for a masters degree in Computer Science at Wichita
State University and is currently working on his master's practicum. His practicum work is in the area of the
automated retargeting of compilers.

Mr. Higgins is currently a Senior Specialist Engineer in the Computational Systems and Software group of the
Avionics Technical Staff.

From July 1977 through April 1982, Mr. Higgins was a systems programmer for NCR Corporation in Wichita,
Kansas. While at NCR, he was involved in the design and implementation of several significant
enhancements to an NCR interactive, multi-programmable operating system. Mr. Higgins' area of emphasis
was file management with particular application to techniques for maintainig data integrity and recovery of
data files from a hardware or software failure.

From 1972 through 1977, Mr. Higgins was in the United States Air Force working as a computer programmer.

t

Y.

!i i

• ~739".-

,~~~~~~~~~~~~~~~~~~~~~~~~~..- ...-............. ..-....--.. ...'.?--- . ..-".--:---.""""""""""



% "

Thomas C. Le4 " W'

Senior Software Engineer

Education:

BS, Engineering, University of California, Los Angeles, 1970

Experience:

Mr. Leavitt joined the Boeing Military Airplane Company in December 1981, and has been involved in
vendor selection and review for a digital autopilot system, a source selection effort for a JOVIAL (J73)-to-
1750A compiler for the B-lB benchmarking effort, and the development of an Ada performance evaluation
test suite which evaluates Ada compilers in the area of efficiency of generated code for various language
features and combinations of language features. :

Mr. Leavitt has worked on the Ada Information Management System (AIMS) project and was involved in the
specification of a VAX-hosted, MIL-STD-1750A targeted Ada compiler for a BMAC Request For Proposal.
Subsequently, he participated in the technical evaluation of the resultant proposals and the management of
the contract that was awarded.

Mr. Leavitt is currently a Specialist Engineer in the Computational Systems & Software group of the Avionics
Technical Staff.

From 1969 to 1973, Mr. Leavitt worked for the UCLA Engineering Department where he designed and coded
a portion of the META-7 translator writing system used to generate compilers and translators for various
target systems. Additionally, at UCLA, he provided design support for the run-time support package used on [
a digital logic simulation system. From 1973 to 1974, he designed and implemented a compiler for a Xerox-
peculiar high-level language (CTL) for process control of a copier/duplicator system at Xerox in El Segundo,
California. In 1975, he started work with NCR in Wichita, Kansas, where he served in the language products
group supporting COBOL and BASIC interpreter design and implementation. He also proposed, designed,
and implemented a performance monitoring package which provided execution time and frequency
histograms for COBOL applications. He also worked in NCR's Corporate Data Base Management committee.

Mr. is a member of Tau Beta Pi and the Association for Computation Machinery.

L2;

40

I~~~~ - .°J6AAJ



0a

zz
E-- EX

* a-741

9:~



z z

04

C1I2

E-

0 n

0-40

0.0

742



?.- -F I 1.,16 - 1

-%

z-

E-o

E-4rz

CE-4

-n
E-4 cn

< V3~

Er E-4

wo > E-o w

0**

z«< z

owzz 
pIz

743



z CO

FW ~~ .D
E--4 u I

0~E 0 E-

=wa E--,

-,
Z

ClC)

EErQ

*. c; 0- E
E- U2InA

0 0E-4
-4_ z E

_ _ _ _ Q-

'E44

r-T.



Lo

i~n 0

E- Z

9Z E

o-
* Kp

94 >4W

m0~ 0C

r4I

Z S

cZZ

745



Cf.)

z

S r0

0a
>4 a4

9zZ

cnh 0r

O~z0

C 12

I746

zr



E- E-

z h- -44

0E-

0-4
00

0 0-

7E-4

* . . .r



(30.~

k~

WL

E-4-

E--

Z E-4

E--

cn*4z 0
OZ E4 0 E-4

E- lI..
E-4

Q> Q
~W E

ZE

0 ,Z0

748



00

0-

z
z E-4.

040
z E-z

0~ 0
ozz

~OE 0

o E--4

> 0

kv , C) E-4 - C)C

2 -4-



0 "

zz
>40

E-4 r4

70



E- z

04 M

C,

9z0 E-4

-- C4

CI12

OLOE-

Z. ZZ

Uzz

751



E- 4 W
C 0

0 0 0r20

CcE--

0Z~ E- 0 59

-E-4C04

0 -- 4

E-4 0

* ~E-

Z .1

E-2



Gor- --

E-

E-10.40

Z( r4

0

>4 Z V
W-E

w U w >

E- E4>Z

753



- -m

E-4,
00

E---4

m E-4

ci,
- Er,

E-E

oc~z-
- z



z -
E-4

9z W

z
0 E-4.

E-*4

z 0 --
Ci,2

E-4~

0n

W E-E0 C

owzz

0 Q

755



A DISCUSSION OF PROTOTYPING
IN THE SOFTWARE DEVELOPMENT CYCLE

M. K. Thomson
General Dynamics

February 1, 1985

Rapid Prototyping In the last decade, several trends in corn-
puter hardware have emerged which will have
a profound impact on rapid prototyping:

This paper addresses factors which lend
to the success of rapid prototyping. Several T v i o n s r
case histories will be presented which support 0oTta

the importance of these factors and demon-
strate the potential benefits. o The availability of economical graphics

hardware.

There are three major factors involved in o Availability of new data entry devices,
a rapid prototyping: problem definition, proto. such as graphics frame-grabbers, digitiz-
type "craftsman" uses to create the model. ers, electrical mouses, lightpens, and so

forth.

Problem definition is prerequisite to pro- o Hardware assistance in high level
totyping. The completness of the definition language support. In particular, the
may have some bearing on the nature of the availability of dedicated LISP machines -.
prototype. A complete definition indicates a make it feasible to use this CPU inten-
prototype whose primary purpose is to demon- sive interactive language in prototyping.

%* strate a well thought out design. A sketchy L
defintion suggests a protype whose initial pur- While not critical to the prototyping
pose is to refine and develop the problem. In effort, these hardware advances have helped to -:

the latter case, prototyping is particularly not only make the effort easier, but also to
important. deliver a professional and realistic prototype.

In paraticular, it has been our experience that
In rapid prototyping, it is the experience, the sophistication of the prototype output has

resourcefulness, and creativity of the program- a great bearing on the success of the proto-
mer which is going to have the most affect on type.
the outcome. Assign an indifferent program-
mer to a prototyping effort and give that pro- A prototyping effort is often an intensive
grammer the sophisticated programming tools one. The availability of dedicated computer
and you will get, at best, an adequate and resources can be a major factor in preventing
indifferent prototype. This, of course, disturbs a bottle neck in the development process.
managers who are often forced to plan only for Also, it is more effective to bring the proto-
the mediocre in human resources. It is this type to the customer rather than vice versa.
reliance on less than average programmers These two factors make the availability of
which tends to prevent rapid prototyping from portable workstations attractive in rapid pro-
becoming a recognized discipline. totyping.

The proceding is not meant to suggest Software tools provide the rapid proto-
that prototyping tools are not important. typing leverage to the programmer. Their
Given the right tools, a programmer can work impact is difficult to measure since their
miracles in rapid prototyping. We will discuss effectiveness is closely tied to the quality of
the two broad categories of hardware and the programmer using them. Software tools
software tools separately, might be categorized as follows:

757

:'.:, . ..... ..... ....,. -.-,..-..:-.. . ....... ,. .... . .. -. .... .. ,,.. . -..- ..- ..:.-.-,,.,.,.:-.... .... •-.. .-..-.-.



o Programming languages A powerful macro processor can '"
transform a weak language into a powerful

o Language preprocessors language. Given a large macro library, many
assembly languages could become candidates
for rapid prototyping. Some languages, such

o Program libraries as LISP and C, have built-in macro processors; .,- :

the AXE language has not only built-in mac-
o Text or syntax-directed editors ros, but also knowledge base driven symbol

substitution and code expansion.

o The operating system environment .
Program libraries provide the facilities to

o Debugging aids save and reuse generic code. This can be par-
ticularly useful in developing prototyping tools
for "cut-and-paste" prototypes. Libraries are

Few question the advantages of high- the most common form of language extension
level languages over assembly languages. It for compiled languages, such as Pascal and
would be difficult to determine which high- Ada.
level languages are "best" for rapid prototyp-
ing. The following are what we believe to be
important attributes of successful rapid proto- Typically, programmers spend a major-

typing languages: ity of their time editing. This fact underlines
the importance of the editor in the prototype
effort. A powerful editor can significantly

o Interactiveness. The edit/compile/link speed up the development process. In some
/run cycle of noninteractive languages cases, editors have features which make up for
discourages experimentation and testing the lack of a macro processor.
because of the time it takes to make
changes. Interactive languages allow
changes to be made on-the-fly and gen- Syntax-directed editors are language
erally have superior debugging features. specific. They catch syntax errors at edit time
Eramlhae suprior dnebugingatures and typically have special features which
Exales ofSP ieract FOR ALanags reduce the number of keystrokes needed for
inludeOL.P, A FOTcode entry. It follows that a syntax-directed
SNOBOL.

editor can assist in getting a prototype done
quickly. -".

o Powerful I/O and graphics support. As quickly.
mentioned earlier, the visual aspects of a A.si.
rapid prototype tend to be important: it An operating system which is unmanage-
is coding these which typically dor- able, difficult to get around to, and unfriendly

inates prototyping. is an impediment to software development.
Operating systems, such as UNIX, were
designed with the programmer in mind and

o Symbolic processing. This is an ambigu- provide additional tools to aid in the develop-
ous term which primarily refers to the ment cycle. Recently, integrated multiwindow
ability to handle amorphous data environments, such as Flavors and Smalltalk,
dynamically. List processing languages, have made it possible to perform multiple
such as LISP are particularly strong in tasks concurrently. This provides a short-cut
this area. to program development.

o Extensibility. Language extensibility Software prototypes are prone to error
makes it possible to build new prima- (if not more so) than more 'standard"
tives resulting in an even higher-level software efforts. Since rapid prototypes are
language. It can be argued that effective often developed in days or weeks, as opposed
macro processors and library managers to months or years for "standard" software
also provide language extensibility. efforts, the sophistication of the debugging -.'

aids is important. As mentioned earlier, inter-
pretive languages are strong in this area.

758

A ..:



LISP is noted for its ability to trace, stop The prototype was then demonstrated to
midexecution and modify, and continue execu- the customer. Some of the proposed design
tion. enhancements were rejected, several generated

a great deal of interest and discussion, amd

A prototype may be undertaken for a several design misunderstandings were cleard

number of reasons, which we will classify into up. The customer was pleased with the proto-
two groups: evaluation and marketing. For type and requested that it be demonstrated to
example, a prototupe might be developed as a potential users for their evaluation. Thus, the
means of evaluating an already existing prototype was useful not only in evaluating

design, to find flaws, awkward interaction, or the design, but also in improving communica-
to choose one of several possible designs. Pro- tion with the customer and in generating a

totypes can be used in the design process as a certain confidence in our abilities to handle

means of trying possibilities and identifying the contact.

additional requirements.
Aspects of the AXE language which lent r

The term "marketing",as mentioned to the success of the prototype were:

above, is being used metaphorically. Some-
times a concept or a design has to be sold to o Support of a multi-terminal/multi-task
one's peers or management before it is sold to environment.
an outside customer. Software designs
presented on paper or through viewgraphs can o Being an interpretive and extensible
be difficult to conceptualize. A working language, which made it eary to get a
model, even if it is incomplete and slow, can kernal up and running quickly and then
do a great deal in communicating the intent of to add refinements.
the design. There is another subtle advantageto prototype demonstrations. They show pro-
gress before the work has even begun and can o Being a list processing language with an

establish credibility with management or cus- integrated knowledge base making it
tomer. easy to simulate a message network.

General Dynamics has developed rapid General Dynamics Electronics Division
prototypes for a number of diverse problems. was in design review for an important new
We will briefly discuss several of these which product when it was discovered that the custo-
we feel represent our general experience. mer was unable to comprehend the proposed

operator interface. This caused a crisis when
the customer recommended creating a working

General Dynamics Fort Worth Division group to define a new approach. General
was awarded an Army contract, to develop a Dynamics asked if it could quickly create a
message communications system in Ada. model of the proposed operator interface.
When the contract was awarded, the require-

ments were vague. Furthermore, some ,
requirements were based on the antiquated Based on a sketchy description of the
approach in current use. General Dynamics problem, a first prototype was created in a few
wished to test alternate approaches and to days by two programmers using AXE and
present the customer with a working model at shown to the customer. The prototype
the project kick- off meeting. revealed that still more information wasrequired from the customer.

A multi-terminal prototype was
developed in one week at San Diego using the A better description was provided by the

AXE language, a proprietary symboilic pro- customer, and in two days, a second prototype
cessing language. This prototype was brought was developed from scratch. This was demon-
to Fort Worth and a number of enhancements strated and received enthusiastically by the
were made in the day preceding the kick-off Electonics Division management, and then P
meeting. demonstrated to the customer, with dramatic

results. They were able to understand the

759

..................................................... . .. .



- .=% - .

proposed operator interface, and it was o The programmer was an expert in
approved. ZetaLisp and the Flavors object-oriented

environment.

This prototype later went through
several refinements, and was used to evaluate Since prototyping has been so success-
some of the details. Consequently, the proto- fully used within General Dynamics, we are
type was successful both as an evaluation and taking the following steps to increase our
as a marketing prototype. capabilities: P

The features of AXE which contributed 0 A complete evaluation of available r
to the success of this prototype include: environments, including languages suit-

able to prototyping and the computers
0 A powerful CRT programming language to support them.

extension used to create a large number
of interactive menus. 0 The acquistion of workstations particu-

0 The interactiveness of the AXE larly suited to rapid prototyping. . .-

language, which made it easier to test Accompanying this must be the
and integrate a large number of modules. thorough training of programmers to

effectively use the workstations.

As a result of the Strategic Defense Ini-
tiative, General Dynamics Convair Division o Some effort to develop a rapid prototyp-

has had to develop and evaluate space battle ing methodology. This may include a

management strategies. A strategy was pro- history of what approaches succeeded or

posed which combined artifical intelligence failed, what problem areas are good or
and distributed processing. A prototype of a bad candidates for prototyping, and

simulation model was developed on a Symbol- perhaps the creation of prototyping
ics 3670 computer for a ten minute video libraries to assist in future efforts. -

presentation. The prototype makes extensive
use of ZetaLisp features running on the Fla- Rapid prototyping offers tangible
vors environment to create a real-time color benefits, both in the design and marketing of
graphics simulation. software. At present, rapid prototyping is an

art dependent on the programmer and tools

The prototype was developed on ten available. Although this is not likely to

hours by a Symbolics expert. It is a goodex- change significantly, increased awareness and . -

ample of a 'marketing" prototypeIts pur- coordination could improve the changes for
pose is to sell the viewer on the viability of ftr fot•": -

the proposed approach.

Factors which contributed to the success
of the prototype are:

0 The powerful programming environment
offered on the Symbolics LISP computer.

o The ease of creating multiple tasks in
ZetaLisp in the Flavors environment and
for them to interact.

0 The powerful color graphics features Ada is registered trademark of the L'.S. Govern-
incorporated into the system. ment, Ada Joint Program Office.

The following are trademarks .r General Dynamics Cor-
poration AXE. BOLT, BOLT JR. DARTS Technology. r

760

.........................................................................



RESUME

M.K. Thomson
-Senior Software Engineer, DSD

EDUCATION

B.S. Mathematics Cal Poly San Luis Obispo, 1977

EXPERIENCE

Mr Thomson is currently the project technical leader for DARTS, a sophisticated artificial
intelligence environment and methodology developed at General Dynamics. He has done exten-
sive work in the development of expert systems, translators, and rapid prototypes.

In 1980 Mr. Thomson became a founding member for the darts project. In this capacity he
helped design and implement major sections of the AXE language compiler and run-time environ-
ment. AXE is a state-of-the-art Al language incorporating features of LISP, SNOBOL, FORTH.
and APL.

Mr. Thomson has also supported a real-time missile guidance system and was a member of
the launch team at Vandenberg AFB. At that time he designed and implemented a stand-alone
computer/radar interface diagnostic package used to determine pre-launch readiness.

761



~~I.2

Eoo 0

0.. aCl)

- co

coi

o I co

F-6



-2-

a. 4j +-

C!,L
0 0c

o 0
0- - 2

o E

076



('rCw
z

w0

Ec
6c

(Ao

c co

U Co
C: c

co co

"64 I



> 1.-..---.rr~w~~.. 
.~~.i-

.4 . . .

A 0 ~ 4

co ci
I- Co U

CDC

amE E.C
co (0o

co LI -

'765



~Icn

CC.

LaM a gNu."

CL,

0'a
zC'- D;

CC

-,°,- -

1- 4-a

0.. 766



fA

am

oc

0 0 +E -
cc+-

000

- 007



VC

U'U

0 0I

02 C F

LLJ
768.



("CL

j j

Cl,)

CoO

* ~0 I~la)

(D0 0oc

ClCU

I- a) ~ Co C) 769



)~an

~ ~co
', 

Ca

cr CD., Y
0

-..o c

CCD

o -*C/) cn cc

F-r

cn 0
01-. U)o~

oL
1- 0)2

c
Cu 0

-oJ6

07



dl a

a. C)a E
0 O

o Co

I- 0 0
00 4-0l

0- 4-

0) O

< Ccn

CIO 4- _- 0 0

00 0
CO O C &CO O > -

Oci LLiI.- *4-

Lij 771
4)-.



COC

C,, 0

cr-. 0 0

z 0 

nY C.4-
E cL.

o-c 00)
- CL
CO a) L

co U)>

'cnOE o~ >_c
co C C

-o o CO~

772



A DISCUSSION OF METHODOLOGIES FOR
THE DEVELOPMENT OF REUSABLE SOFTWARE

M. K. Thomson

General Dynamics

1. Introduction probably macro expansion in assembly language.
In 1984, an IRAD study was started to pro- The C language which features macro expansion

duce a reconfigurable ATLAS compiler written in (1) and the generic feature of ADA (2), is an
Ada. This compiler must be reconfigurable in example. Surface models are attractive in that

three areas: syntax, test station operating sys- they can use the information in the software in
which they are embedded. The model only dealstems, and form of intermediate language and test wih the ae that age te original

equipment. In addition, the compiler must run with the changes that augment the original

as fast as possible on 64K logical address
machines. Presently, the design phase is com- One problem with the surface model is that
plete and software implementation has begun. it is useful only over a narrow domain range,
The software consists of ADA code and tools because it has little knowledge of the program
which will reconfigure the compiler. The structure and no knowledge of the design con-
software which reconfigures the compiler was cepts. As a result, its range of usefulness is lim-
developed using a system called DARTS TM, ited to programs which share the same physical
which was developed internally by General program structure. However, a changing design
Dynamics and is expressly designed to develop requirement can totally change the physical lay-
reusable software. out of the program. This is true for systems

This paper shares the experiences obtained requiring high speed execution which characterize
from creating software, which from its inception, embedded systems and one of the major require-
is designed to generate reusable software. The ments of this project.

scope of this paper consists of three parts: the A second methodology creates and manipu-
design methodology to create reusable software; lates symbolic models of the software to obtain
to relate the methodologies to our experience in reusable software. This methodology is a deep
developing the retargetable ATLAS compiler; to model because it has, to some degree, knowledge
give an overview of our future methodologies of the software design as well as some of the
and the areas in where they will be applied, software requirements. Deep models will usually

have software structures similar to those found in -

2. Design Methodologies Al programs. An example of a deep model is K..
The methodologies presented are automated given by Neighbors (3). As will be pointed out

techniques where software is generated from high later in this paper, deep models are more power-
level design concepts as opposed to the conven- ful than surface models. However, for the
tional library approach which concentrates on software reuse process to be cost effective, deep
reusing source code. The automated techniques models sometimes must be integrated with sur-
strive to reuse software designs rather than to face models. In the survey article by Horowitz,
reuse actual software. The automated approaches Kemper and Narasimhan (4), the trend in Appli-
offer the greatest impact for the reuse of cation Generations is to embed the Application
software. Presently, there are two major Generator into a conventional high level
automated methodologies for generating reusable language. An Application Generator would be
software. One embeds higher order structures in considered as a deep model which generates data
a programming language. This methodology is a base programs. However, in order to put in gen-
surface model because it has little knowledge of eral features to support more flexibility, the '
the program structure. This model has existed in designers were faced with either turning the
the past in many forms. The first use was Application Generator into a programming

language or embedding the Application
Ada 'RO Is a Registered trademark of the U.S. Government. Ada Joint Program Office The collowing ire trademarks of

General Dynamics Corporation: AXE. BOLT. BOLT JR. DARTS Technology

I



Generator into a conventional language. The Y -other information needed
embedding choice was simpler and offered the by the automated approachgreatest flexibility. ' ,

greaestflexbilty.Z - lines of software needed
In using these methodologies to design b cnenon aroach

software, some basic problems are encountered. by conventional approach
The first problem, pointed out by Boehm (5), is The inequality states that the "equivalent"
that reusing software is a tricky undertaking. amount of lines of code for the automated pro-
Projection models sometimes predict that the cess must be much less than the conventional
integration cost of reused software can exceed approach. The term "equivalent" amount of lines
the cost of developing totally new software. In of code is used because data or information are
an article by Keringham (6), the C modules often needed by the software models and in
which were reused the most were the ones which essence count as lines of code.
were initially designed for reuse. Past experience
indicates that for reusable software to be In the second scenario, software is used for

effective, the software must be initially designed more than one application. Then the following

with the reuse as a design criteria, inequality must hold if the automated analysis is
to be effective:

However, designing reusable software con-
tradicts normal software design practices in that,
with a conventional top down design practice, the Where the "1" terms represent additional
requirements should be known before the effort to transform a solution from one applica-
software is designed. As a result, there needs to tion to another.
be a new type of methodology for developing
reusable software. The methodology, which has In developing the logical models for the
proven successful, is the logical models which reconfigurable ATLAS compiler, these inequali-
represent the behavior of the software. The logi- ties are kept in mind. The inequalities in essence
cal models were then simplified and modularized determine areas where automated help is most
as much as possible. The success of the models needed and areas where the tool may not be
depends directly upon how much the problem effective. Also, leverage can be obtained in
domain can be modularized. Then, tools were documentation as well as in lines of code.
developed to transform the logical models into Experience indicates that simple models give 7 to

physical code. Surface models consist of conven- 1 leverage in lines of code and usually another 7
tional software embedded with special informa- to I in the documentation over manual means.
tion and are an effective means of doing the It is not unusual to see models coupled together
transformation, and leverages multiply, much in the same

manner as the mechanical efficiencies of pulleys
This type of design criteria has theoretical multiply when coupled together in a block and L

appeal, but the criteria must also solve practical tackle. Designs of automated systems which
problems. A question exists as to whether it is have extremely large leverage (greater than 50)
better to create special tools to generate reusable usually consist of many models with much
software or to simply recreate the software manu- smaller leverage factors. The problem of gen-
ally. Using the special tools extracts resources erating models with high leverages is similar to
from the project, so there must be a simple designing mechanical tools with high mechanical
rationale for their use. advantages.

There are two scenarios for using
automated tools to generate reusable software. 3. Practical Experience
In the first scenario, software is used in a single This section presents the practical experi-
application. The tools generate reusable software ences obtained from developing a reconfigurable
effectively if the following inequality holds: ATLAS compiler. Addressed are our experiences

Y+Y Z with the tools used to develop reusable software.
and the experience gained in developing logical

where: models.

The tool used for building :he
X - lines of software needed reconfigurable ATLAS compiler is DARTS.

with the automated approach which was developed internally by General .

.7- .



Dynamics, and was designed to be used as a The second class links the components together
. - software manufacturing tool. The tool is general to form a working ATLAS compiler. The

purpose and has been used to build software modules which link programs together play an
translators and expert systems. DARTS was used important role in extending the range of the pro-
on this project because of its effectiveness in pro- ducts build by this system. Also, the linking .
ducing reusable software. DARTS has list pro- modules have the responsibility of constructing
cessing which is needed for symbolic processing. the compiler for optimal speed execution. The
LISP and many other Al languages also have target architecture for the ATLAS compiler is a
these features- however, one of the main features 64K logical address space and speed performance
needed in reusable software development is will be largely determined by the number of disk 2
string manipulation. Included in DARTS is a accesses needed. The disk accesses will be
pattern matcher which operates like the pattern minimized, and as shown in Figure 3, by being
matcher in the SNOWBAL language. The pattern pipelined with other processing to further speed
matcher and string manipulation are critical in up processing. Performance data will be placed
automatically generating software since there is in the linking modules so they can arrange the
extensive text manipulation. Most LISP based software as to maximize speed.
languages do not have a flexible string represen- In developing reusable ATLAS software, we
tation to be competitive with DARTS. DARTS found that our tools are compatible with ADA
also has a data base which allows one to easily methodology and, in fact, we believe that the
create a frame type Al system, a feature which tools enhance the ADA methodology. In particu-
was used extensively in this project. The system lar, the package concept was useful in the design
which generates a reconfigurable ATLAS com- approach. The results of this project show that
pler is shown in a top level view in Figure 1. the package concept in ADA could be extended
The system is layered as shown. The top level is through surface models by embedding them in
a configuration management system which the package itself and that packages could be gen-
manages the configurations which are generated erated through the use of logical models working
by the rest of the system. Either the next layer with surface models.
or the inner layers but not next inner layers are
the front ends which allow users to enter data 4. Directions for Future Research

0llO into the system. The front ends vary from ones

that allow detailed information to be entered by Currently, General Dynamics is investigat-
design specialists, to front ends that assist ing the use of DARTS in the area of embedded
unskilled users in building the desired tailored systems, particularly the distributive processor
compilers. The inner most level is the system environment. Our direction is to use data flow
which builds a compiler to desired specifications. techniques integrated with our automated
This is the main part of the system around which software development to support multiprocessor
the rest of the system evolves, software development. V -_

Figure 2 shows a block diagram of the inner The data flow techniques which have been
most system which builds the ATLAS compiler developed are similar to the techniques outlined
to the requested design specifications. The figure by BABB (7). There is believed to be consider-
shows that the system which builds the ATLAS able potential in these techniques when they are
compiler consists of many specific models. There combined with automated software techniques.
are models for processing syntax features, gen- Currently, a prototype system is being developed
erating ATLAS intermediate code and generating which will take a program generated for a single
the data structures and the routines to manipulate CPU system and distribute the software in a mul-
the data structures needed by the compiler. tiple CPU system. The system will have the abil-
There are two classes of modules. The first class ity to analyze performance and spot potential bot-
builds the components of the ATLAS compiler. tie necks in real time systems.

" ' , . " .o ,



.........

. . . . . . . .

............. .. ..... . .....
...L .. ...h. ... .

...... .........
...................

LEER.. ....FCA1O ....J

............... T R O

-'~ .K P .. .MTE .I O ''N .r .....

. ... .. . ..



mwro %& N

imm

BU-L

En

F~!G~ 2 roe E~ DIALtEe-



REFERENCES (4) Horowitz, Kemper and Narasimhan, "A
Survey of Application Generators", IEEE

(1) Kernigan and Ritchie, the C Programming Software Magazine, January 1985, pp. 40-54
Language, Prentice-Hall, 1978 (5) Boehm, Software Engineering Economics,

(2) G. Booch, ADA Book, "Software Engineer- Prentice-Hall, 1981
ing with Ada, Benjamin Cummings, 1983 (6) B.W. Kernighan, "The UNIX System and

(3) J.M. Neighbors, "The Draco Approach to Software Reusability", IEEE Transaction on
Constructing Software from Reusable Com- Software Engineering Vol. SE-10, Number
ponents", IEEE Transaction on Software 5, pp. 513-518
Engineering, Vol. SE-10, Number 5, pp. (7) Babb, "Parallel Processing with Large Grain
564-573 Data Flow Techniques'. IEEE Computer,

pp. 55-61

. .%

'.:i'.-.':

.o, .'. ~

p-o

778 .

I°o-



RESUME

M.K. THOMSON

Senior Software Engineer, DSD

b. 'EDUCATION:'

B.S. Mathematics, Cal Poly San Luis Obispo, 1977

b. "EXPERIENCE:*

Mr. Thomson is currently the project technical leader for DARTS, a sophisticated Artificial Intelli-
gence environment and methodology developed at General Dynamics. He has done extensive work in I. ,"p

* the development of expert systems, translators, and rapid prototypes.

In 1980, Mr. Thomson became a founding member for the DARTS project. In this capacity he
helped design and implement major sections of the AXE language compiler and run-time environment.
AXE is a state-of-the-art Al language incorporating features of LISP, SNOBOL, FORTH, and APL.

Mr. Thomson has also supported a real-time missile guidance system and was a member of the
launch team at Vandenberg AFB. At that time he designed and implemented a stand-alone
computer/radar interface diagnostic package used to determine pre-launch readiness.

0o° 9
%°° I

%. 1. -

i ..

% • -. "

," --

'- 779



RESUME

C.A. HANSEN

Software Chief (Acting)
Advanced Technology

EDUCATION

B.S. Mathematics, Rutgers University, 1969
M.S. Computer Science, Fairleigh Dickinson University, 1971

EXPERIENCE

Mr. Hansen has over 15 years experience in the area of software design for real time systems. He
has been a manager in software support organizations for 7 years.

Mr. Hansen is currently responsible for the management of the Advanced Technology department
within DSD, Western Center. His department is responsible for investigating new technologies in
software development, artificial intelligence, and expert systems.

' %,

2

780- :..-

.'~. .y................................................................



RESUME

G. EDGAR

Software Design Specialist, DSD

EDUCATION

B.S. Engineering Physics, Ohio State University, 1975

b. 'EXPERIENCE'

Mr. Edgar has over 9 years experience in software design, particularly using expert system tech-
niques. He is currently developing a fast, reconfigurable ATLAS compiler, written in Ada, using .
DSD's DARTS technology. This project blends Artificial Intelligence, automated software techniques,
and compiler technology.

Mr. Edgar has also functioned as the chief architect for a group specializing in microprocessor
based test equipment. In this role, he directed the development of an expert system for small, portable
test sets. This system interfaced to a larger expert system which automated test software as well as
maintaining the software during test validations.

7'

*. . 'I

,. . . . . ...

-. ,-...*U .' * . -



* 1 ,. 'tt : 'L k,'. Ja .a-S ~." " .'1k.Aa € ' m- 1%. L. E A -
- 

-. a. .m [&W'L J .. & 4, ~F*. .e , ,X . "". .% .-. a . ,. "

- °tl..I- '

% • -° -. ° -. ° - - - - - .- -- - - • • , -.- ° . , ." " . .-.-. " ° . .°.' ." " , .°-'.-' *.' '. .. ' ° .' **.. -



Li
00

wuJlo
LU)

cw

783



1ML

CU

0 A

m

a
U"

C3,
W ho

784 3



S UI
0S

L.1 Lu a~t
CL8

0 SM

> UJC

mo =a
LU@ U La

w~ CA

7856

* * u



zzh

lu

0 41C
C5

o go
I.E. - I

cc,

08



U6

00

a mw-

CO) ca

= U

=

u
a ieU6I wccU

o787



4.4

UAA

U -

IL!IL
ac
oa c

um St

W6

L&t

78



II
ca

LUU

ca

0 cc

r. ca

o 31

aa

0. U U



ILv

93.

CO)%

a 9

0 0

Im =aLa.
m -m

- W4
cc

an a
0Ina a

Ul

09



U"

0 a I
Ins.

uJ a +-

0 a - U

WA W A
u

u z

Dim - .7 .;

WARUU

I..

- + Iim vi

0 0 -m

791 ,.:

°U a .'



A sV

W6

Co's

wU Ulf

U

o U

U)792



c'I
w yo

a I

-I- a ka U

I z

793



&..a ... -. -w. - &rrz.rw - - a

(I)
-Iw Ua p.

0o
U
I"
a

~, WI Iu 4
U ~ U
I" WI -

'a * mu'
U~ - U

- a a.o
(0 .~ ~WI WI WI a U

0 0 0 0 *
* 12

794

.-.-.*..~* ~,. -~*-.. ***.~.. ., ~* .* *--.*-.*--*--*--** . ~ ....-....-,** _____________________________________________________________________________________________



Wix-M.;-NIZ~~ ~~~~ .7 r7- VAt -Z . J

rr 29

P~U.

ccI
LLIzI

Cl

09



ow
LUU

ccu
m m

96 a 1-

1o W

U0 I 0
0z IN OC

796t



I. ... i

;-.. 4'.-

4.0

ul CIO b

* Alp.

zmu

o..t U.,.-

IL _

.- I 9., n - 5 -'-

III U

* mu: -

o-

I°% -
,+' - '-''." .-+ .-'-.'-o'- + -'. '.'. "-..'+ "" ","+ ." ." ,."",,''-, "., . .. " ++. " . "'- . ". " . " -"-" "'2. ". "- ". "."".""."".""." ." """'""" " . ' - ,."" . -'



INFOMATION PACKAGE FOR WORKSHOP ON
REUSABLE COMPONENTS OF APPLICATIONS SOFTWARE 1

Dr. Gregg Van Volkenburgh
ALLIED CANADA, INC.

201 City Centre Drive
Mississauga, Ontario

L5B 3A3N (416) 276.1044

and

Mr. Paul Bassett
NETRON, INC.

99 St. Regis Crescent North
Downsview, Ontario

M3J 1Y9
(416) 636-8333

A:
JANUARY 31, 1985

799.



Section 1: Introduction

Section 2: The Reusable Code Problem (Topic 2) ...

2.1 External Subroutines (Topic 2)

2.2 Code Generators (Topic 2)

2.3 The Frame Methodology (Topic 2)

2.4 Software as a Manufacturing Enterprise (Topic 5)

Section 3: Software Tools that Exploit Reusability (CAP*)
(Topic 5)

3.1 The Common Structure of CAP* Tools (Topic 5)

3.1.1 The Optional Rapid Prototyping Phase (Topic 5)

i3.1.2 The Fine-Tuning Phase (Topic 5)

3.1.3 The Program Production Phase (Topic 5)

3.2 CAP's Impact on Maintenance (Topic 5)

3.3 CAP*'s Impact on Quality of Code (Topic 5)

3.4 CAP's Impact on Documentation (Topic 5)

3.5 CAP's Impact on the Software Development Environment
(Topic 5)

3.6 CAP' s Support for Portability, Retro-fits and Upgrading
non-CAP' Code (Topic 5)

3.7 CAP's Support for Security (Topic 2)

3.8 User Experience with CAP* (Topic 1)

3.9 Our CAP/Ada* Reusability Experience (Topic 8)

* CAP. CAPenvironmern. CAPinput. CAPscreen. CAPreport are trademarks of
a NETRO

Ada is a trademark of the U.S. Department of Defense.

800

*°



%

Section 1: Introduction new programs by "cutting and splicing" pieces

This submission, made by Allied/Netron, of old programs together. This approach
discusses several of the topics raised in the demonstrates that N'
Special Notice regarding "Workshop on
Reusable Components of Application Software" (1) there is a great deal of potentially
in the December 21, 1984 issue of Commerce reusable code available, and
Business Daily. Using its own funds Netron hais (2) it is worth the effort to adapt it rather

selling software products which enable
developers to increase productivity by a factor
of 10 (at least) while simultaneously employing Unfortunately,
a methodology which: (1) the programmer does not have any -

(1) enables rapid prototyping to be carried systematic way of isolating just what
out, portions of programs are relevant;

(2) guarantees reusability of code by defining (2) the customization process is time-
code components, consuming, tedious, and prone to error;

(3) automatically processes reusable code (3) once the process is finished, both old andlibraries, new programs must be maintained as if

(4) promotes program designs which makce each is completely unique, despite the
considerable common functionality.extensive use of reusable libraries. Mitnne efr hud b

The success of this product (CAP*) for proportional to the novelty in the system,
COBOL has prompted Allied to underwrite the not the number of source statements.
development of an expanded version for Ada*.
This new product is named CAP/Ada" and The central thesis of this submission is
became functional as of December 15, 1984. that a good solution to the reusable code
It is available for demonstration at the present problem turns out to provide a solid technical
time. As a self-contained system, CAP/Ada* basis from which to understand and deal with
operates on any DEC VAX machines the production, quality, and maintenance issues
supporting the VMS operating system. Detailed currently besieging the software industry.
information regarding use is available from
Allied, at the address given on the cover page. 2.1 External Subroutines (Topic 2)

Since Allied/Netron are already applying It is still widely believed that external
the design, production, use and maintenance of subroutines form a satisfactory repository of
Ada* code via CAP/Ada*, we discuss several reusable code. Separately compiled and linked
of the workshop topics from a product subroutines are obviously useful, but they are
viewpoint, rather than from a problem analysis limited because there is no graceful or
viewpoint. Our submission most closely falls systematic means of effecting:
under topic 5 (automated part composition), (
although in discussing the capabilities and
benefits of CAP/Ada*, topics I (specification subroutine to fit each calling program's
and design), 2 (reusable definition), and 8 particular context of use, and
(Ada* experience) addressed. To aspects of (b) global evolution of a subroutine when it
our submission relate to the most appropriate must change to benefit all future callers
topic, we have cross indexed the topics in our of that subroutine without victimizing
headings. current callers.

Section 2: The Reusable Code Problem (Topic The fundamental problem is that a
2) subroutine is a representation for a single Z4

In the software industry's current cottage function which is not adaptable at source-
industry style, it is common practice to build program (function) construction time. It may

Sol
,* %

-. -- ., .--" . - -- --. -- ."--- -' ' -.-. . . . .. " .-- *..": .'- . * .-' .-* -. -- - ,' ' .-- ---. .. -.' ,- , '- ,-,, ' . - *" -i ... '- .i.



have considerable run-time flexibility, but at Because the data operators are functionals, not

the time of actually molding the subroutine functions, frames can accommodate both local

into the program that must use it, an external customization into an individual program, and
subroutine by its very nature has no flexibility global evolution to benefit all future programs. ""
at all. Frames are implemented xtu(e.g. Ada) and

(prord frtext.

2.2 Code Generators (Topic 2) There are just four macro commands
Code generators have been around for whose essential role is to automate the "cutting

years (e.g. RPG) and although they are usually and splicing" of programs:
very succinct and expressive, they have never
enjoyed widespread use. The simplest kind of COPY-INSERT allows a frame hierarchy
code generators are those that generate "raw" to be copied into a program (by naming
source code. The problem with those the frame at the root of the hierarchy),
generators is that they are basically "one-shot" and causes customizing frame text to be
tools. Because each generator is an expert at INSERTed anywhere into that hierarchy.
only a part of the overall problem,
programmers must supplement and modify the BREAK-DEFAULT defines a named
generated source code to suit their own needs. "breakpoint". Breakpoints mark arbitrary
Having adapted the code, they have no means places in a frame where custom frame text
of reusing the generator without destroying all can be INSERTed to supplement and/or .-.

of their manual modifications. To be more replace DEFAULT frame functionality.
useful, a code generator must allow some
follow-on mechanism which can adapt the REPLACE systematically substitutes a
generated source code automatically, thus specific code string for a generic one
allowing reuse of the generator without the loss (throughout a frame hierarchy). For
of the customizations. example, field names, picture clause

More sophisticated code generators elements, etc. are generic if they tend to

typically supply "user exits" for handling this vary from program to program.
problem. These provide linkage to separately SELECT incorporates into a program one
com piled, external subroutines which can frame te u f o a stof od e
usually be written in a variety of general frame text module from a set of modules

purpose languages. The trouble is that: statements (with arbitrary nesting) which
(a) this is always an additive technique; there operate at text construction time. An

is no way to change or remove generated important use of SELECT is to automate
functionality; version control (global evolution).

(b) predefined interfaces often omit Frames are written by both analysts and
information that is essential in the tools. Having code generators produce frames
customization (the "black box" effect); solves the problem of destroying subsequent

(c) all non-procedural parts of the generated modifications by automating the "cutting and
code, such as data declarations, are splicing" of the customizing frame text into the
simply unavailable for customization. generated frame text. r
A proper solution requires generators to All customizing frame text for one

provide for automatic customization of program is localized into a SPECIFICATION or
generated code (not just run-time SPC frame. An SPC governs the entire
communication with generated modules). process of building the compilable source

program from its frame components. As will
2.3 The Frame Methodology (Topic 2) be seen, a methodology incorporating frames at 'J

We have developed a frame methodology its heart offers a potential for:
(CAP*) to address the reusable code problem (a) fill-in-the-blanks program specifications
from the perspectives of both programmers (rapid prototyping),
and code generators. A frame is a machine- (b) automation of the process of reusing
processable representation of an abstract data previously built, high quality software
type, with 'abstract" meaning functional. (both human and machine written),

802
... -. .. .=.



-".- ,-- -

(c) automatic customization in context, combination of systems analysis and usage
experience in the application domains to which(d) maintenance of only what is unique in a they are applied. The frame library in turn

program, supports a three phase
(e) evolution without obsolescence manufacturing/maintenance process.

(elimination of unnecessary retrofits),
(f) painless enforcement of good 3.1.1 The (Optional) Rapid Protyping Phase

programming technique (standards). (Topic 5) .. 

At this phase end-users and analysts alike
2.4 Software as a Manufacturing can define a compilable program in minutes.
Enterprise (Topic 5) The key here is that a heuristic designer
In the next section a frame based design module extracts a few "broad-brush"

for software manufacturing tools is presented, requirements from the user, then automatically ..

in which standard frames are the standard sub- designs a complete set of specifications for the
* assemblies, various code generation steps are desired program.

the processing operations on basic components Details of this process are as follows.
(raw materials) to produce fabricated parts, and First, a special purpose editor engages in a

I the frame processor operating on the SPC dialogue of questions and answers, and actively
frame is the process of final assembly with any prescribes the major choices to be made,
custom options. depending on answers to previous questions.

The code generator then uses heuristic logic (i)
Section 3: Software Tools That Exploit to specify all the minor choices, creating one or

Reusability (CAP*) (Topic 5) more declarative specifications, and (ii) to
The discussion and analysis of Section 2 create specific frame specifications (in an SPC

implies that the software engineering discipline frame) containing any code that may be
of automatic adaptability can be realized as a necessary to properly combine the functions r.
coherent yet open ended set of software being expressed in (i).

. manufacturing and maintenance tools. Netron Clearly, using a rapid prototyping facility
affiliate has developed and successfully by itself automates 100% of the programming.
marketed such tools for the past two years However, for this approach to be viable, the
under the name "Computer Automated result should be a good first approximation.
Programming" and "CAP". CAP*'s initial The prototyping designer is optional because
focus was in the COBOL software market. the complete specification of a program can
More recently, Allied has sponsored the always be done from scratch in phase 2. If the
extension of the CAP" methodology by Netron heuristics are inappropriate to the needs of the
to automate Ada* programming, in anticipation current program then simply bypass them.
of the needs of the D.O.D. and others.

While D.O.D.'s primary interest is in 3.1.2 The Fine-Tuning Phase (Topic 5)
embedded systems applications, it must be At this phase any number of definitional
stressed that it is in the nature of reusable components may be specified which collectively
software techniques to be based on highly define what and how the executable module
generic underlying formalisms, independent of (program) is to be written. The one essential
particular languages and environments component is the Specification frame (or SPC;

cf Section 2.3) which, if phase 1 of the tool
3.1 The Common Structure of CAP Tools was used, will already have been prototyped for
(Topic 5) the application analyst/programmer.

At the common core of all CAP* tools is Otherwise, he starts by making a copy of a
the library of model reusable frames (see prototype SPC, called a Template. A Template
Figure 1). These are assumed to be available simply contains, in one linear list, all of the

- prior to the building of the programs that reuse Break-Defaults, all of the Replace symbols and
, them. The library is open-ended in two senses: all of the Select options that are available

new frames can be added at any time; and old throughout the entire frame hierarchy. The
ones can be upgraded at any time without Template also contains the version code which
forcing retrofits. The frames are designed by a insulate the new program from all further

803

F

i..................
•

... .I*



3c 0 a~. -j me .. - an -3 N. Sb -. C .X .ld IA - :-~

pNIP

a.a

gaUr C xJ~

96 (4 t

4. -
CIOI

0. .4 '>
'4

to a

CL. C U i

r44

0.. ill
O 4 804



* changes to the underlying frames. the library; it cuts and splices them all with any
customizing code (whenever it belongs
throughout the source); it compiles and links

doesn't care where in the hierarchy these the resulting (Ada) source.
particular customization options take place.
For he has a fill-in-the-blanks list that he walks The result is an executable program. S
through and he is systematically reminded of CAP* treats the source as a transient file that is .'
all the places the frames allow him to make actually deleted after the compiler has

* customizations. (The word "allow" is used processed it. There are two reasons for this. . ,.
deliberately, because a well structured, First, it is completely redundant, capable of

software engineering discipline is being being reconstructed at a moment's notice.
enforced by the CAP* system here.) Second, because it is well structured and easy

to read, it poses too great a temptation to be
The process of filling in the Template modified. Of course, tinkering at the source

with customizing details creates the level also destroys one's ability to maintain that
architectural blueprint for the entire program.

program from the much higher specification
The analyst thus transforms the Template into level. The listing is always available so that
an SPC, which forms the definition of that one can understand what's really going on at
program. It collects in one spot, for easy run-time for further fine-tuning purposes.
maintenance access, just the options which are
important. In other words, the SPC is what
makes this program distinct from all other 3s ai nc
programs in the system. Typically a two or three page SPC spans a

30 or 40 page source program. And that's all
In addition to predefined templates, the that needs to be maintained throughout the life

library of frames is accessible through an on- cycle of the program. This represents an order
line frame taxonomy. The developer uses it by of magnitude reduction in being proportional !

matching his informal problem description to to the numf 1" pmeans to factor systems into -.
the most general problem categories at the top toithe pucs eans tfaorsesnt o
of the taxonomy. At each lower level the user uep
refines his choices until a specific frame is Frames as previously stated have an
selected. At this point, a template is created evolvability property: they improve with age.
automatically from the chosen frame and And improvements can be easily made without
merged with the SPC (if any) for further forcing retrofits. It is the Select mechanism
customization. which enables a frame to incorporate arbitrary

Ia t tt ze o o amounts of change while retaining all of theIn addition to the SPC, zero or more•.,

declarative definitions of specialized program previous versions in a manner transparent to
components are created/refined in phase 2. As all programs.

with the SPC special purpose editors are used 3 CAP's Impact on Quality of Code
to create and customize these definitions. But
at no time must a user treat the resulting code (Topic 5)

as a "black box". The editors permit him to In a hand coded programming
look at specific details of the source code environment, a typical programmer works very

* whenever this is needed for fine-tuning hard to implement the specifications within his
purposes. As for the fine-tuning itself, deadlines. He often lacks the time to "go the
arbitrary amounts of custom code can be extra mile" to ensure the full efficiency and
written to supplement and/or replace modules robustness of his code. Furthermore, he's not
of the pre-written and generated frames. (In particularly inclined to be that "fussy", because
our experience with COBOL applications, less he doesn't get a sufficient return on his mental
than 10% of the final code is custom. cf investment. The next time he writes a similar
Section 3.8) program, he has to reinvent those fussy details p

all over again.
* 3.1.3 The Program Production Phase (Topic 5) On the other hand with frames, a

CAP's use of the SPC to operate on software engineer is naturally encouraged to be
frames is fully automatic. It generates frames fussy because he invests that skill and effort
that stem from the declarative definitional once and only once. From then on that quality
components; it pulls pre-written frames from is available "for free" every time that frame is

5 -

- . * 05 .'-*'.N .--

... . . . . . . . . . . . . . .

,- ...... ''° .,',- .- .' .-. ..-. ... ...... . .-.. .... ..-. .••. .-.- •.. . -.-. . -.. .--.. . . . .". .-. .. .. ..... . .... .-.'. . ..'.' -_ L._ . - '-'



reused. It also provides a means of reducing CAP* benefits both system and user
the disruption that occurs when skilled analysts documentation at several levels:
change jobs. Their frames form a reusable o There is less of it since the reusable
legacy for all those who remain, frames need to be documented once, not

Frames constitute a means to formalize each time a version of the code appears
and enforce standards with a degree of rigor in a program.
and precision exceeding the usual pseudo- o The meta-information about the purpose
English standards manual approach, which and scope of the code is formalized to a
depends on the highly questionable much greater degree than with ordinary
understanding, concurrence, and self-discipline code, and the specifics are separated from '6

of the programmers. Consistent external the generic so that it is plain to see how
interfaces across applications become each use differs from the others.
simStructured programming style standards
also find their greatest scope when used to o Before building any code or at
code standard frames, because the break-points prototyping time, all the declarative

tend to attach themselves to the structured specifications of various system and
units of code. While the SPC frames may program components can be printed toautomatically provide the bulk of asuffer from non-standard codelets, these are a formal specification of the system, in a
small fraction of the total program, and the what you see is what you get" form.
standard frames tend to teach-by-example how Ths sigi i clathe tetoto codeusing he stadards.This significantly collapses the time to --.

produce formal specifications. Of course,

Frames exhibit much higher mean-time- this same mechanism is available at any
to-failure rates than ordinary code. The reason time a hard copy definition of the i-
is that standard frames and frame generators functioning system is required. But with
are highly seasoned components in the course the specifications already available on-
of whose evolution many improvements and line, the need for hard copy is reduced.
optimizations have been made. Frames also
tend to be "extrenmum tested" very early in o The CAP* approach facilitates and ....

their lives. Whereas ordinary code is tested supports interactive, "help key" -. ,.,:.
only in the context of its current use, frames documentation, about the toos, the ',) u
are tested as well for their reusability, in quite frames, and the software produced with

dissimilar environments.
Programs handwritten from scratch have o Frame techniques permit "documentation

no chance to acquire the quality and frames" to be reused and customized in

thoroughness that is the hallmark of a good just the same automated fashion as
frame. This is why one thinks of frames as software frames, with all the attendant

capital assets. Just as with a conventional benefits.
manufacturer, the capital assets lie precisely in 0 CAP* provides utilities that permit
the standard sub-assemblies which undserpin tutorial user documentation to be created
all the different flavours of the products he as a by-product of running the actual
produces, and in the tools for assembling and system. On-line documentation produced
maintaining them. in this fashion is called a CAP* "Movie".

Frames play exactly the same role as Much tedious manual writing is replacedbye pla "hands-on simlaio that roae be
standard sub-assemblies. Notice that generated by a "hands-on" simulation that can be
frames avoid the problems with traditional edited with additional commentary.
code generators by simply arranging that they Further, as the application software
emit frames rather than raw source code. evolves, the movie system provides a
CAP* can keep the customization process relatively painless way to quarantee that
entirely factored from generated code and the documentation continues to match
automates the customizing as a final assembly the software.
step. 3.5 CAP's Impact on the Software

3.4 CAP*'s Impact on Documentation (Topic Development Environment (Topic 5)

..

806

-. . . . . ."...77



Currently CAP sets" for evry CAP* customer (a s pset
alhnmrc trias t upr is the particular combination of compatible, -,

, " ." development environment schema (called components of a product that is consistent with.",."
"CAP* environment) designed especially for the customer's shipping order).

i software engineers. Each engineer can create There are many schools of thought about -

and evolve a network of his own customized retro-fits. The use of evolvable frames permits
development environments. Each such a new degree of freedom in the formation of
environment can store up to 45 names of retro-fit policies. As new or improved contexts -
various files, programs under development, of use are discovered for a frame it is possible
test utilities, and so on. By placing a cursor to change it in arbitrary ways without forcing
under any name and pressing a function key, any existing software to be retro-fit or rebuilt.
he can cause any of the entire arsenal of CAP* Of course, it may be imperative for other
tools, standard system functions, and his own reasons to do a partial or complete retro-fit.
special tools to operate on the selected But that is a decision that can now be made
file/module. using criteria unrelated to the maintainability

Typical operators activated by single of the software.
keystrokes will convert specifications to Often in hand coding environments,
executable form, edit and list files, run retrofits are unavoidable even for the simplest
programs, search libraries using pattern masks, of changes. Because of a lack of consistency in " -i- ' access documentation, copy, display, or scratch the manual reuse of code, each affected- ".

files, preserve changes to the environment program must be treated as a unique case and "1
itself, and link to other environments. By subjected to exhaustive retesting. In other-
saving environments which contain related words no advantage can be taken of the
files, procedures, and utilities, along with considerable functional overlap that otherwise
appropriate comments, work is automatically used to exist among the programs. Retro- ...

focussed onto a single screen. As a work fitting is a painful, unproductive, error-prone "-"
organizer and practical means to manage task, producing "burn-out" among talented
project development, CAP environment* people.
endows CAP* with its vital ease-of-use Should retro-fitting be desired in a CAP*
properties. environment, frames offer major advantages. ..

It is envisioned that a bit-mapped First, the custom code is permanently
graphics development terminal will replace the separated from the reused code. This means

" current alphanumeric ones, with an embedded, that the places in the code needing retro-fitting
. powerful, micro-based CPU in which to are localized for easy access. Second, the

package CAP*. Rehosting CAP* can then be formal parameters that customize a frame
replaced by the simpler problem of re- guarantee that, once the nature of the retro-fit

" interfacing a standard CAP* development is worked out, it can be applied with absolute
terminal. consistency across all the users of that frame.

This means that less work is necessary and
" 3.6 CAP's Support for Portability, Retro-fits fewer errors are likely as a result of the retro-

and Upgrading non-CAP fit.
Code (Topic 5)" Often the question is asked: "How can

Portability of code is another objective of the man-centuries of existing software be
CAP'. This is a natural consequence of the upgraded to take advantage of frames?" First
reusability properties of frames. Thus, it is of all, CAP* happily coexists with all non-
possible to maintain one canonical definition of CAP* software because the operating system
an application system together with variations, cannot disgthem. Should a rewrite be desired
then produce executable versions of the (and often what is needed is a redesign, not a P
application for a wide variety of deployment rewrite), several semi-automated utilities can
environments (machines, languages and provide assistance.
operating systems). For example, utilities exist that can

CAP* now supports portability across six observe the external run-time behavior of a
machine-language environments. Frame program and induce declarative CAP*
techniques are also used to assemble custom definitions of those external aspects of the

0o-:'

=.. .. . . . . . .. . . . . . ................. .. '''



V_.~~~ W•lr ,,

program. Often this reduces to a small Institute and consultant to the STARS project).
fraction, the work required to duplicate the Several refereed papers have been published.
precise functionality of I/0 intensive programs. Names and phone numbers of expert reviewers -
Another utility can be provided that converts and customers can be supplied upon request.
existing source programs into frames as first The following is a summary from a
approximations to a unified definition of parts detailed case study which analyzes the actual
of related programs. There is still ample work usage of CAP*.
to be done when rewriting to CAP* but much CANADIAN OUTDOOR PRODUCTS
of the error prone tedium can be avoided. INC. is a subsidiary of NOMA INDUSTRIES

3.7 CAP's Support for Security (Topic 2) LTD. In March 1983, Canadian decided to
create a computerized Requisition system to

Security control is provided by assigning replace their manual Requisition system.
individual user access rights on a program-by-
program basis, or on a user-by-user basis, or
both. Automatic monitoring is also provided, is run on a WANG VS computer using

A log is kept of all attempts to access programs requractive toe cea te m antained,
covered by security. This log can be printed as ristyonsetoce ated, manted,
a report, allowing system usage analysis, and displayed, searched, authorized, ordered,
detection of unauthorized access attempts. recorded and reported upon.

The system works with a User List and a The Requisition system was built by a
Thera sste work withfae Urids ad ati student analyst during his first work term leave

Program List and. in effect, builds a matrix fo h nvriyo aelo fe h"- from the University of Waterloo. After the .
containing the access information. Each time a first week, enough of the system had been
protected program or procedure is run, the frst week, enoughaoadihn ss re ed
Security System automatically checks this prototyped that Canadian users recognized
matrix, denying or granting access accordingly. serious design problems. The system wasredesigned and put into production by the end '

Users are given indirect access to the data of the third week.
files through an inheritance process. Main S pwt
menus are given Read and / or Write access to Sixteen programs were created using 
the appropriate data files. Programs (including CAPc toolsf t create and contrl the

secondary menus) inherit Read and / or Write interaction of the 22 screens and 3 reports
access to data files from the menus from which though which the Requisition system is
they are run. operated. CAP* tools enabled the author to

create the Requisition system by writing less
Incorporating security into a new program than 10% of the total COBOL lines needed.

or adding a straightforward. Access rights are
set up from either User Mode or Program One method of judging COBOL program
Mode, by user or by program. Specifying production with an without CAP* tools is to
access information for a new user or program compare the total number of lines of submitted
is facilitated by the "Copy Access Information" source code in the entire Requisition system
feature, which allows one to copy the access with the number of hand-written lines. Purely
rights for an existing user to a new user, or to comment lines were discarded.
copy the access rights for an existing program The results show more than a 10:1
to a new program. Once copied, it is a simple productivity gain by this measure. There were
matter to tailor the access information for the 34,000 lines of submitted code contained in the
particular user or program. 16 programs of the installed Requisition

system. This represents a net productivity of
3.8 User Experience with CAP* (Topic 1) over 2.000 ies of fine-tuned COBOL per

CAP* has been in continuous use in man-day. Only 3,000 lines were written by
COBOL, Wang VS environments for over four hand, but even by this measure there is a ten-
years. It has been a marketed product since fold gain over normal code production rates.
April 1982 and is in use at over 50 sites in the The following table shows, for each of
U.S. and around the world. There are the 16 programs forming the Requisition
numerous industry and academic experts with system, the number of lines (i0 hand written in
independant knowledge of CAP* (for example the SPC frame. (ii) in the generated frames,
Dr. Cordel Greene, Director of the Kestrel (iii) in standard frames. and liv) in the total

oubmitted to the COBOL compiler.

•08

...... '........... ... '.* .............................. ,...,...... . . . .



Name~~ Tol ouc

Proan CAP. 2979 1

PEQe2 •2130 71 1264 795 [
PREQ3 "2318 78 1013 1227 ,.,
PREQ4 "1721 62 869 790 -

PRE05 •3440 4 21 1904 1115"--•
PRE06 "2776 157 1766 853 -.•
PREQ7 "1510 40 673 797 '-.

( -PREQ8 3018' 206 1806 1006.

PREQ9 •3238 281 1910 1047 ;--"
PREQA "3659 436 2223 1000 ...
PREQI •3399 436 1916 1047 ""
PREOF Frame Lib. 274 187 0 87.o-
PREQG •223 136 0 87"-"
PREOR CAPreport 954 140 198 616 I-
PREOS "1086 226 216 644 ,•
PREQT "1152 179 290 683 " -

TOTALS 33,877 3,112 17,779 12,986-'"

Figure 2 '

Number of Code Lines.'.,

809

o'" • 
°ftft~i

t ." f0

Frameorames Frame

",-,:.,., .',.e',e_.Pe'.'Q.1 CA,-; ;,,input., 2979., ; ',,.. 56 1731 1192.. . .... ... - ...•_. o



3.9 Our CAP/Ada* Reusability Experience possible, for example, to select among code paths
(Topic 8) according to argument type: the only variability

Recently CAP* technology has been re- possible is by direct substitution of type-name or
engineered to produce structured Ada* programs. subprogram-name parameters in contexts where ,,. .In the process of building and testing the they are syntactically permitted. Nor is it possi-
CAP/Aia* reusability tools, a number of proper- ble to perform arbitrary text substitution, nor to

Calter ovrrae resairt tools, arga cumbe of proper
ties of the Ada* language have been evaluated alter, override, or insert program code to meet
regarding Ada*'s support for reusability. These specific requirements.
are: These are not shortcomings of Ada* imple-

(1) Packages mentation in particular, but are inherent in the
very concept of the subprogram as discussed in

(2) Operator overloading Section 2. To allow a programmer such degrees

(3) Generic subprograms of freedom at run-time would be extremely
(4) dangerous from the point of view of programSThe ability, in a subprogram, to specify reliability. The difference between run-time and

default values for parameters whose values program construction time in this respect is thatthe consequences of errors at program construc-
(5) The ability of a calling program to refer to tion time are explicit in the constructed program

parameters symbolically as well as position- text, whereas run-time errors must be inferred
ally from program behavior.

(6) Predefined attributes of variables and types Second, the power of generalization avail-
Reviewing these briefly, a package is a col- able to the designer of a reusable code module is

lection of subprograms and associated program- necessarily much less at run-time than at pro-
ming resources whose external interface is for- gram construction time, despite the availability of
mally defined, operator overloading means that certain attributes of variables and so on, because
Ada* can distinguish between identically-named whatever run-time facilities are available must be
subprograms on the basis of differences in the less than those provided by a compiler. unless
number and/or type of their parameters. Generic the run-time program incorporates the full power
subprograms are subprograms which accept one of a compiler. (If we are dealing with an inter-
or more type-names (or subprogram names) as preted language, of course, the distinction ("
arguments, so that a single sour versioof a sub- between program-construction time and run-time
program can serve as a template for multiple is blurred, nevertheless, even interpreters do not,
instaniations, within narrow limits. Predefined for reasons at least of efficiency, make their full
attributes are such things as lengths of strings, power of generalization available to the program-
array dimensions, machine addresses, offsets of mer.) In designing reusable code modules at
elements within agther f-explanThe general effect source-construction time, advantage can be taken •
of these features is to improve the suitability of of the typing, symbolic reference, diagnostic,
subprograms as repositories of reusable code. expression-evaluation, and other features pro-
Some of them (3,6) allow greater generality in vided by a compiler, and thus the designer's abil-
subprograms than most programming languages ity to generalize is much greater than anything
do. Other features (4.5) help address the prob- that could practicably be provided at run-time.
lem of retrofitting changed or extended subpro- Third, in attempting to achieve generality at
grams to existing programs. Operator overload- run-time rather than at program construction
ing helps in the management of subprogram vari- time, issues of run-time efficiency and program
ations, while the package concept is meant to size are raised which are by no means secondary
facilitate the implementation of abstract data in the context of a language whose primary area
types, which are attractive as basic units of reus- of application is seen to be in the development of
able code. Nevertheless, in comparison with a mission-critical embedded systems. The usual
reusable-code methodology which operates at answer to efficiency concerns, that they can be
source-program construction time, even the Ada* addressed by "adding more horsepower", is inade-
approach suffers from severe limitations. quate when by "adding horsepower" we are

First, the generic subprogram facility is adding to the number of parts that can fail, not to
extremely limited and does not begin to approach mention to manufacturing costs.
the power of a true meta-language. It is not

qlt) .B6.

.............................................. . .. ... . . . . . .. . . ..................- .,- • - -......"" " ". "" ".""." "" ".'"" """': ." " -.- "--- "'"":" """ ""." "d"." "" ,. ".""." ""...""...""."."...."..'....................-..".""".."."..."...."."......"



-m °°..o.,.- P --

When CAP* technology is coupled to Ada*, running an Adao compiler. As an illustration,
*. -" the result is synergistic. Not only do frames sup- portions of the system were developed on an

ply an escape from the above limitations, but the IBM PC/XT computer using a very restricted
programmer is also freed from the tedious and subset compiler, without encountering capacity or
error-phone coding redundancies implied by performance problems.
Ada"s strong typing and structuring require- The CAP/Ada* package consists of the fol-
ments. CAP* also allows the programmer to lowing components:
group functionally related program and data
structures which Ada* forces to be scattered CAP frame processor, frame library, screen

- across a package. Finally, CAP* permits the editor/generator, report

expressive power of Ada* to be amplified by generator, programmer's workbench and

embedded special purpose (declarative) notations. file-maintenance program generator

Allied/Netron have implemented User Manual
CAP/Ada* on the DEC VAX family of comput-
ers under the VMS operating system. System Training
dependencies are relatively minor and well-
isolated, so that porting the implementation to System component documentation
other computers and/or operating syste M, is not (proprietary)
a major problem. The implementation is
designed to work with any full Ada* compiler, Use of the package requires a DEC VAX or
and can be fitted to most existing partial com- compatible computer, the VMS operating system,
pilers. Space and capacity requirements are not and any reasonably complete Ada* compiler.
onerous, and the system can certainly operate Further details regarding CAP/Ada and/or
without causing response degradation or exces- a demonstration of its capabilities can be obtained
sive disk-space usage on any machine capable of by contacting Allied at the address shown on the

cover page.

811

• o



* - I. - -qrA. - %r;! -W W . 1. 4 .

RESUME

Dr. Van Volkenburgh

Profile
Dr. Van Volkenburgh began his career as a project scientist and project manager in the aerospace

industry. He broadened this experience by similar assignments in geophysics/geochemistry, the
environmental sciences, and advanced manufacturing. Throughout this period, and earlier while in col-
lege and graduate school, he was closely involved in developing a wide variety of software systems,
ranging from university administration to large scientific modeling systems, and more recently, real
time multipoint remote data acquisition and multi-point alert systems.

For the past five years, Dr. Van Volkenburgh has occupied senior management positions in
government, the venture capital community, and high-tech industry. He is now employed by Allied
Canada. Inc., in Mississauga, as Manager, External Research in the corporate Research and Develop-
ment division. Allied Canada, Inc. is a wholly owned subsidiary of Allied Corporation, Morristown, .
New Jersey. He is currently developing several business areas for Allied in technologies such as
advanced materials, biotechnology, manufacturing processes, and artificial intelligence.

A large portion of his time is being spent on assignment to the Allied/Netron joint venture com-
pany to coordinate, develop, and exploit business opportunities in the fields of Al, Ada software, and
reusable Ada code.

Dr. Van Volkenburgh has authored scholarly papers in a variety of disciplines and is the recipient
of several awards for academic excellence and distinguished public service. He is the owner of a small
business and serves on the Board of Directors of several companies.

C

Education

Bachelor of Arts. Chemistry and Mathematics (cum laude):
University of California
Irvine, California
June, 1969

Master of Science, Space Sciences:
York University
Downsview, Ontario
November, 1970

Doctor of Philosophy, Space Sciences:
York University
Downsview, Ontario
November. 1973

.- %

812 -.--...

-- J2~dC..°.



7. 7 7 T 1 -. T 17 7

Prior Work Experience

Senior Management and Business Development
1983-84: Idea Corporation, Toronto. Position: Director, Research and

Development. Responsible for locating and evaluating commercially
promising technology across Ontario Universities, research
institutes, and hospitals. Also responsible for formulating and ,,
closing commercial investments in these technologies, managing the
investments and marketing them when mature.

1981-83: Ontario Ministry of Environment, Toronto. Position: Director, Air
Resources Branch. Management of a shop containing 125 professionals
from a variety of disciplines and having a budget of $9
million/year. Line responsibility for all research and special
projects (e.g. acid rain, destruction of toxic chemicals), for all
regulation development connected with pollution control, and for
protection of public health during abnormal pollution conditions
and/or emergencies. Frequent presentation of position papers and/or
expert testimony to the media, public forums, or legislative
hearings.

Systems Analysis and Programming

1981-83: Ontario Ministry of Environment, Toronto. Position: Director, Air
Resources Branch. Management authority over new system for
province-wide air pollution and meteorological real time data
collection, and real time analysis and Air Pollution Index
calculation and public alert notification.

.* 1978-80: Ontario Ministry of Environment, Toronto. Position: Program 1.
Manager, NEMP: New system developed to collect air pollution data
using field microprocessors, transmit it upline, and perform
analysis and reporting on Data General Eclipse S120.

1970-73: York University, Toronto. Position: Graduate Student. Developed
rocket payload data transmission and analysis capability on PDP
11/70.

1968-70: University of California, Irvine. Position: Research Assistant.
Numerical reaction kinetics simulations on IBM/360 (20 hour/week
position).

1966-68: IBM, Irvine, California. Position: Program Analyst. Programmed
and implemented timeshared computer-aided student records/enrollment
systems, developed on IBM/360 (20 hour/week position).

Project Staffing and Management

1978-80: Ontario Ministry of Environment, Toronto. Positions: Supervisor,
Technology Development and Appraisal Section (1979-80), Program
Manager, NEMP (1978-79). The latter position involved managing a
5-party field study of a large new industrial complex near Lake
Erie. The former position covered supervision of all special

projects carried out for air pollution research and measurement.

1976-78: Barringer Research Limited. Toronto. Position: Head. Projects
Administration (1977), and Assistant to the Vice-President of

13•

~~~~~~~~~~.. .. .... . . .. . . ...... ,........ . .. . . ,.... -, . .. .- ,. , . ... ,. ., . .-.,: , .) .- .
• ..)-.' . . -'.' - !f....'-,2 _ ." "--- - ." -""" " - - - " - """ - .' ' " " ' "" "'"-. . " ... -" - , -_ .. .- -

Research and Commercial Projects (1976). This company has been a
world leader for 30 years in developing new geophysical/geochemical
instrumentation, remote sensing systems, and analytical capability.
The positions involved management of instrument development,
manufacturing, and sales, as well as trouble shooting for contract
R&D work and coordinating manpower and business proposals across the
entire country.

1975-76: National Oceanic and Atmospheric Administration, Boulder, Colorado.
Position: Project Engineer, Fluourocarbons Measurements. This U.S.
government agency conducts advanced research and monitors the
environment. The particular project cited was a joint field L
investigation with the Space Sciences Centre at York University
(Toronto) utilizing high altitude balloons with subsequent trace
chemical analysis of payload samples.

1973-75: Intra-Space International, Toronto. Position: Research Director.
This company was started as an outgrowth of university aerospace
research. The company quickly grew to a staff of 12 people and
successfully developed and delivered electro-optical hardware to
NASA and international industrial clients.

Career Accomplishments

Idea Corporation (1983-84)
Identified key structural issues involving technology transfer from R&D
institutions %

Formulated several novel programs to promote technology transfer, the i- ,I development of entepreneurs. and the creation of wealth via business
development in Ontario universities

* Located over 170 investment opportunities in these institutions ..-

Negotiated and managed 6 investments involving $5.1 million covering the
licensing of research and the start-up of 4 "high-tech" companies

* Negotiated with several large companies to buy 3 of the above
investments. Buy-out of 2 investments has been completed.

Ontario Ministry of Environment (1978-83)

Protection of public health at the Mississauga chlorine/petrochemical
derailment (1979), and also during several air pollution alerts (1981-1983)

" Successful completion of the first comprehensive provincial
government/industry environmental impact assessment program (NEMP,
1977-1983) V"

Key contributions to the development of Canadian policy regarding the
control of acid rain. and to an influencing of U.S. policy in this area

Negotiation of Ontario/Michigan Pollution Control Agreement and Member. IJC
Board

814

r

.... *]
• -. --' -'. . .. " . '. i -: - .- ' '. • . • -. - ' .-. .- . . . - ..:- -. i :' - - -.'. .. -. - .- ' " -

. ~ .-. . . x.. JJ ..L '_ -.3h J- __ =M -.,t 1...* **.W -- ~J Z . pt *._, "--* r. P ' . P d .d .. SV' TW r% ", --,/ . .r , W rn a ' 1- a- r r- twm r - - t.l'=l

* Successful "cradle to grave" management of leading-edge research projects
in air projects in air pollution, including design, installation, and
operation of 2 real time air pollution measurement, analysis, and control
systemsM 3
Organized and implemented a tripartite joint-venture $4 million acid rain
research program with the Federal Republic of Germany and Environment
Canada involving advanced numerical modeling of the troposphere on a
super-computer

" Procured funds for, and managed design of several new multi-million dollar k
air pollution initiatives, including 3 van-mounted trace contaminate
analysis systems involving GC, GC/MS, and other instruments

* Timely delivery of a complete, world-class air pollution management

program in a period of severe constraints.

Barringer Research Limited (1976-78

* Managed the transition of several commercial products in environmental,
geophysical and geochemical fields from prototype to production and sales
stage

Brought in over $3 million of coi.:mercial products business through direct
effort

* Rationalized the operation of a 100 person team of professionals involved
in lab services, research and commercial products/services, and
significantly boosted company productivity

* Successfully marketed high-technology research services internationally. . -

* ~•..
National Oceanic & Atmospheric Administration (1975-76)

Engineered key components of a stratospheric balloon payload, from concept

to hardware

* Constructed, tested, and operated associated ground preparations systems

* Participated in laboratory measurements program of recovered payloads.

Intra-Space International (1973-75)

* Turned a university laboratory prototype device into fully qualified NASA
hardware, meeting manned space flight standards, through hands-on effort
and management of a project team

* Built a high-tech company from the ground up

* Managed all aspects of a small company under the executive direction of -

the President

Marketed specialized aerospace hardware in Canada, the U.S., and Europe

Successfully resolved severe conflicts involving labor and contracts. -
-.

815

........................ - •.. .-.. o.. o. •"-.'- : ., ." " -,." J ' "- " ". ... " ,_ _."-'rk _a.,_A .J"_ r .. , . .,-_ .. C. .. ,, K'," , K.' K .'-'._' --c.,.i.. ':..'

Awards and Distinctions
S 1981-1983: Member, International Joint Commission, Michigan/Ontario AirPollution Board .-

• 1979: "Order of the Tank" award (Ontario Ministry of Environment) for
Distinguished on-site Service during the Mississauga derailment -.- l

1973-1975: National Research Council (Canada) Industrial Postdoctrol Fellow

1970-1973: National Research Council (Canada) Postgraduate Fellow

Publications

(1) Don L. Bunker and G. Van Volkenburgh; "A Trajectory Study of Phosphorus-32 Recoil in
Sodium Phosphate", J Phys Chem, 74, 2193(1970)

(2) W. Braun, C. Carlone. T. Carrington, G. Van Volkenburgh and R.A. Young; "Collisional
Deactivation of H(2?20P) Fluourescence", J Chem Phys, 53, 4244(1970)

(3) R.A. Young and G. Van Volkenburgh; "Collisional Deactivation of CO(a?30) J Chem Phys,
55, 2990(1971)

(4) G. Van Volkenburgh and T. Carrington; "Resonance Fluourescence Transfer and
Radiationless Deactivation of Systems of Intermediate Optical Depth", J Quant Spect Rad
Trans, 11, 1181(1971)

[5) G. Van Volkenburgh, T. Carrington and R.A. Young, "Electronic Energy Transfer in Isotopic
Variants of the H*(2?20P - 2?20S) + H02? System", J Chem Phys, 59, 6035(1973)

(6) A. Schemltekopf, G. Van Volkenburgh, et al, "Stratospheric Balloon Measurements of
Chlorofluorocarbons" NOAA Technical Report. 1976

316*

r

7 7,2

31-6.

%" I

* ~ .c r - . 2. --- ' A fU h ..h - - - . tZ . • A -. C .U '7
v

.L-" ~ ' T T U X .?(-

'"* .":. RESUME

Mr. Bassett

Profile

Mr. Bassett is considered to be an expert in both theoretical computer science and applied
data processing. He has published several technical articles and papers, taught as an assistant
professor of computer science, founded and operated Sigmatics Computer Corporation, and is
currently Vice President of Netron Inc.

Education

Honors B.Sc., Mathematics Physics and Chemistry (MPC), 1967
University of Toronto

M.Sc., Computer Science, 1970
University of Toronto and was accepted into the doctrinal program

CPIM, (Certification in Production and Inventory Management). 1982

American Production and Inventory Control Society (APICS)

Certified by the Ontario Mortgage Brokers Association, 1978

Two Society of Actuaries Fellowship examinations

Career Chronology
March 1981 - present Vice President and part owner of Netron Inc.. a

division of Noma Industries

June 1976 - June 1982 Founder and President, Sigmatics Computer
Corporation

July 1973 - June 1980 Assistant Professor of Computer Science, York
University - September 1969 - 1977

Systems Consultant: Hospital for Sick Children, Ramtek Corporation
Norpak Limited (others on request)

July 1974 - 1980 Partner in Carol Electronics; a firm specializing
in marketing computer graphics equipment

Sept 1968 - 1969 Project Leader (Real Time Systems) Hospital for
Sick Children

May 1966 - Sept 1968 Systems Engineer/Programmer, IBM

Professional Career

Mr. Bassett is the Vice President of Netron Inc., the software products division of Noma
Industries, Ltd. Netron develops and markets Computer Aided Programming (CAP?tmO)
products, designs and installs turnkey manufacturing systems (MRP-II). and provides software
conversions from various machines to WANG-VS systems.

... .-. , 1

'S.

CAP is based on a proprietary software engineering methodology (Frames) for manufacturing
- and maintaining custom application software invented by Mr. Bassett. Launched in March/83,

CAP has generated intense interest in both academia and industry. CAP is being sold world-wide.
* The company is currently undergoing rapid expansion. The department of Industry Trade and -

Commerce has awarded Netron a $650,000 R&D grant for the further development of CAP
products.

Mr. Bassett developed his Frame concepts at Sigmatics Computer Corporation as a means of
improving the production, quality, and maintainability of their customized computer systems for
small businesses. Sigmatics continues in the turnkey business today, while Netron's primary focus
is development and sale of CAP tools.
are A few of the many systems designed and implemented by or under Mr. Bassett's directionI ~are: j,

-- A complete tax administration, general ledger,
payroll, accounts receivable and accounts payable
system for a municpal government.

" Accounting and financial systems for a newspaper,
security systems manufacturer, a paper products
distributor.

-Work-in-process control systems for a printing
company and a containers manufacturer.

- Inventory control systems for a warehouse operation.

- A real-time clinical suvoort svstern for patient
monitoring.

- A run-time support package for raster graphics

display system.&

- A Bill-of-materials system for a containers
manufacturer.

A a consultant, Mr. Bassett has been of service to many companies on topics ranging from
artificial intelligence, through the design of new computer graphics hardware products, to
management consulting tasks regarding organizational structure and information flow analysis. (c.f.
Technical Manuals and Reports).

In the area of medical computing, Mr. Bassett is credited with the following technical
innovations:

-Development and implementation of "open ended
design" techniques for real-time (critical care)
clinical support systems.

- A complete software package to implement a
conversational time-shared terminal system with
alphanumeric and graphic displays; new data
reduction algorithms for handling redundancies
arising in the storage and retrieval of
beat-to-beat ECG information; a medical record data
structure implemented with pure hash coding
techniques; the introduction and adoption of
structured Programming in a Scientific (Fortran) ""
programming shop.

818

e. ..

*-.. ., ..-....:..,. ... ,;> ,> -

Directorships and Other Administrative Experience

' .. Mr. Bassett is or has been a Director of the following corporations:

Holdco Corporation of Toronto, Ontario (Owens Netron jointly with Noma)
Caleq Corporation in Montreal, Quebec
Carol Electronics, Ottawa, Ontario
Datron Systems Ltd., Vancouver, B.C. "

Sigmatics Corporation, Barrie, Ontario, as well as being president of
this company
Skildata Corporation Ltd., Barrie, Ontario
Stroud Curling Club Ltd., Stroud, Ontario

Mr. Bassett is a member of the Curriculum Advisory Committee of the Business Division of
Georgian College of Applied Arts and Technology in Barrie, Ontario.

Membership in Professional Societies

Association for Computing Machinery

IEEE Computer Society

Academic Career

Teaching Experience

Mr. Bassett was an Assistant Professor in the department of computer science at York
University. Over his seven years at York he has been the course director for the following course
types:

Data Structures
Machine Structures
Introduction to Data Processing
Introduction to Artificial Intelligence
Real-Time Systems
Advanced Projects

In November 1983 Mr. Bassett helped develop a course for managers to teach them how to
apply techniques and technology to improve their productivity. This was sponsored by the Ontario
Ministry of Colleges and Universities' Management Productivity Improvement Project.

At Sigmatics Mr. Bassett has designed and given several introductory "hands-on" computer ,- "
programming courses in conjunction with Georgian College for training groups of Canadian Armed
Forces from Base Borden.

Referred Publications, Articles and Invited Talks

(1) Bassett, Paul: "Design Principles for Software Manufacturing Tools" Presented at the
Symposium on Application and Assessment of Automated Tools for Software Development,
November 1, 1983, San Francisco.

(2) Bassett, Paul, and Giblon, Jay: "Computer Aided Programming: Part I" in proceedings of
ACM/IEEE/National Bureau of Standards Soft-Fair Conference, Washington D.C., July 27,
1983.

(3) Bassett, Paul, and Rankine. Scott: "The Maintenance Challenge" in Computerworld (In
Depth), May 16, 1983.

819

...

(4) "Computer Aided Programming" presented at:

DPMA Conference, Baltimore, October 31, 1983
ACM-83 Conference, New York, October 24, 1983
IMPACT'83 (WANG User Conference*), Boston, September 12, 1983
20'th Design Automation Conference* (ACM, IEEE sponsored), Miami, June 27,
1983
CIPS Conference'83, Ottawa, May 16, 1983
University of Windsor, Departments of Computer Science and Physics,
Windsor, May 5, 1983
Federal DP Expo Conference, Washington D.C., April 14, 1983
University of Guelph, Dept. of Computer Science, Guelph, March 30, 1983
SOFTWARE/Expo-East, New York, March 15, 1983 F

also in proceedings

(5) "Computer Aided Programming in an Artificial Intelligence Context" presented to CIPS
special interest group, Toronto, May 25, 1983

(6) "Fourth Generation Languages" Panel Discussion, CIPS Conference, Toronto, May 18, 1983

(7) Bassett, Paul: "Computers are the Key to Advances in Software", Computing Canada Vol. 8,
No. 19 (September 16, 1982)

(8) "Towards Assembly Line Techniques for Manufacturing and Maintenance of Commercial
Application Software", presented to a York University Computer Science seminar, March
1980

(9) Bassett, P.G., Wong, J.W., Aspin, N., "An Interactive Computer System for Studying Human
Mucociliary Clearance", Computers in Biology and Medicine, Vol. 9, July 1979

(10) "Towards a Clockwork Intellect: Recent Advances in Models for Epistemology and
Teleodology", February 14, 1975, presented to York University Department of Philosophy
Graduate Seminar

S(11) "Programming Methodology for Delivery Real-Time Computer Services to Diverse Clinical ..-

Environments", September 6, 1974, Montreal, presented to 5th Canadian Medical and
Biological Engineering Conference

(12) "Semi-Automatic Procedure Synthesis", two seminars to Psychology Graduate Seminar (Ph.D.
thesis report), July 1974, York University Appeared on CBC Network television program
called "Tomarrow Now" to discuss Artificial Intelligence, May 1974

(13) Horny, G.T., Bassett, P.G., Shepley, D.J., "Design of an Open Ended Clinical Support
System", 25th Annual Conference for Engineering in Medicine and Biology, Hal Harbour,
Florida, 1972

(14) Horny, G.T., Bassett, P.G., Shepley, D.J., "On-line, Real-Time Computer Support in an
Intensive Care Environment", 4th C.M.B.E.S. Conference, Winnipeg, 1972

(15) Bassett, P.G., "A Combinatorial Theorem",. Canadian Math Bulletin, Vol. 9, No. 4, 1967

Technical Manuals and Reports

(1) "RPG 400, 500, Programmers' Reference Manual" Published by NORPAK Corporation,
Ottawa, Ontario. July 1977

(2) "IGP Systems Reference Manual" Published by NORPAK Corporation, Ottawa, Ontario, May
1977 " '

(3) "RPG 3000, 4000, 5000 Programmers' Reference Manual" Published by NORPAK
Corporation, Ottawa, Ontario, December 1976

(4) "The Hospital Graphics Language (HAGL) Programmers' Reference" (Manual) Hospital for -

Sick Children unpublished report. December 2, 1974

(5) "The Hospital Graphics Language (HAGL) Run-Time Specifications" (,Manual) Hospital for
Sick Children unpublished report, December 2, 1974 L-

820. .

..20 ""..
t * . . *. .. *.-.

.6
.

.... 1.79d

(6) "FS-2000 Programmers' Guide- (Manual) Published by RAMTAK Corporation, Sunnyvale, :
California, October 1974 A

(7) Preliminary Specifications for the FIDDLE Macro-Assembly Language* York University I'
Department of Computer Science - Internal Memo, October 1974 S

(8) "HAGL" Compiler Maintenance Manual" Hospital for Sick Children unpublished report, May1974 '

VN

821
o- ".- . ".

kk
REUSABLE SOFTWARE IMPLEMENTATION

TECHNOLOGY REVIEWS

P. Grabow
W. Noble
C. Huang

J. Winchester -5%S -

Hughes Aircraft Company
Ground Systems Group

Summary library; (3) Reuse of personnel is prime
means of reusing software in industry; (4)

Hughes recently completed a Navy Language technology, by itself, is only a
study contract "Reusable Software Implemen- component of the software reuse solution;
tation Technology Reviews". The objective (5) The larger the breadth of component
of this study was to review and evaluate reuse, the greater the need for formal
available software development methodolo- specifications; (6) The level of specification
gies with respect to reusable software for required for reusable components is more
Navy embedded computer systems. The con- formal than is currently used in large-scale
cept of software reuse was also discussed in developments; (7) Information explosioncounterbalances the desire for formal -"
order to understand the wide varieties of reu-
sability that are possible, determine what specifications; and (8) Good specification
kinds of software reuse is suitable for a given language is very important for software reuse.
environment, and uncover problems in
achieving reusability. Based on the evaluation of the metho-

dologies and the current software develop-

Nineteen software development metho- ment practices, some aspects of software
dologies, representing current research, com- development methodologies could be imple-
mercial and industrial sectors, were selected mented immediately and improve the
for review and evaluation. The framework efficiency of the software development pro-for the methodology evaluation is based on cess through reuse or by facilitating reuse.
five technology areas (language, structuring These recommended aspects include: ()
methodology, design environment, perfor-
mance evaluation, and maintenance) and one environments across multiple projects; (2)
non-technical area (market factors). Within Reuse field-support software; (3) Provide
each area, a number of attributes were automated support for documentation; (4)
derived to highlight its most important Reuse requirements, specifications, and
aspects. When appropriate, a range of possi- designs; and (5) Design for reusability within

aspets.Whe apropiat, arane o posi- restricted application domains. A procedureble values was defined for an attribute to pro- relctin appiate o doloeuha
vide insight into the nature of that attribute. for selecting appropriate methodologies that
These attributes were applied, in turn, to support reuse can be derived from the results

under review, of the study along with determining whateach methodology future enhancements are required.

Some of the more significant observa-
tions and conclusions from the methodology The last part of this paper provides an
reviews are: (1) No methodology provides example of a successful software reuse pro-
code-level reuse between dissimilar applica- gram that has been carried out at Hughes
tion areas; (2) No methodolopy for large- Aircraft Company. This discussion provides
scale development provides a reliable storage quantitative information on the productivity
and retrieval mechanism for a code-level improvement through reusing software across

823 • -

similar projects. the concept of reusable software and the fac-
tors that affect the feasibility and value of
software reuse. In section three, attributes ,.-.

Section I. Hughes RSIP Phase I Report for a software development methodology are "
Highlights defined with respect to six technology areas.

Section four reviews 19 software develop-
1. Reusable Software Problems and Objec- ment methodologies with respect to these
tire of the Report. attributes. Appendix A contains a description

of a real-time, embedded system currently
o Problems - Cost, reliability and timeli- under development for the Navy.

ness of software for Navy embedded
computer systems. An overview of the report can be

obtained by reading sections one and two.
Objective - To evaluate available Serious comparisons of the methodologies,

software development methodologies, however, should be made by also reading
sections three and four.

Study Report Organization - 2. Analysis Applied to Reusable Software -
Implementation Technology Reviews,'."

SECTION 1 - Introduction and Sum- lec ow
mary Selection of 19 Development Methodologies

Through Research, Interviews, Etc.
SECTION 2 -Concept of Reusable..
Software- Prog. Apprentice

- SARASECTION 3 - Software Development -SCR
Methodologies - S ey- PAISLey .'

SECTION 4 - Software Development RNTDS
Methodology Reviews - Gypsy-Etc L: L
APPENDIX A - Advanced Combat ESTABLISH TECHNICAL AREAS OUT-
Direction System LINED IN STATEMENT OF WORK .-

- Language Technology
The incentives in software reuse lie in - Structuring Methodology

its increased reliability, improved develop- - Design Environment
ment time, reduced cost, and more efficient - Performance Evaluation
use of manpower. -Maintenance

The objective of the report was to -Market Factors
review and evaluate available software ESTABLISH KEY ATTRIBUTES OF E
development methodologies with respect to TECHNICAL AREAS
Navy embedded computer systems, and to
determine which methodologies are suitable
for producing reusable software. - Paradigm

- Breadth of Problem Domain
- Life-Cycle Phase Product

The report, as delivered, contains four - Size of Product
major sections. The first section describes - Etc.
the purpose of the report, how the study was
conducted, conclusions drawn from the -Mgmnt Supp Tools
reviews, and recommendations for incor- - Tool Integration
porating software reuse into the software - Complete, Automd
development process. Section two discusses - Etc.

S..2 4
S24.-.

-. -.. - .-........-. --.... ,. ,., -.-....

p. '.1*

ESTABLISH POSSIBLE RANGE OF o Research
" -VALUES FOR ATTRIBUTES (WHERE - Programmer's Apprentice (PA)

APPROPRIATE) - Harvard Program Development
System (PDS)

- System Architect Apprentice
APPLY ESTABLISHED CRITERIA TO 19 (SARA)
METHODOLOGIES SELECTED - Draco

- PAISLey

- Single Statement
- Procedure o Commercial
- Subsystem - Software Cost Reduction (SCR)
- System - Restructured Naval Tactical

Data System (RNTDS)
- Formal Development Methodology

- None Considered (FDM)
- Minimal Reports - Gypsy
- High, Formal Reports - Information System Design
- Complete, Automated Optimization System (ISDOS)
- Reports - Software Requirements Engineering

Methodology (SREM)- Higher Order Software (HOS) ?.
Nineteen software methodologies were - Hgru rer Sfare (HDs)

selected for review. Those chosen represent Technique (SADT) Desig
approaches that are well documented in the T n (DMt
literature or have been used by the industrial - Ada-Oriented Methodologies- Smalltalk
sector. For each of these development - Raytheon
methodologies five technical areas and one
marketing area were addressed (see figure).
Within these areas, four to 14 attributes were o Industrial
examined. Each attribute is provided (where - Hughes
appropriate) with a range of values that the - Grumman
attribute might assume. These values are - Boeing
meant to provide insight into the nature of
the attribute. They are not, in general, used
as quantitative metrics for the comparison of To conduct the methodology review, a
the methodologies in this report. However, sampling of different software development
in some of the methodology reviews attribute methodologies was chosen, 19 of which were
values have been used to describe particular reviewed. The data for these methodologies
methodology attributes, were gathered by reviewing the relevant

literature and, where feasible, interviewing
An example attribute is Size of Product, knowledgeable personnel. The report contains

associated with the Structuring Methodology detailed reviews of each of these methodolo-
technology area. The possible range of gies based on a set of attributes (defined in
values assigned to the attribute includes Sin- Section 3 of the report).
gle Statement, Procedure, Subsystem, and
System. For the SCR methodology, this The software development approaches
attribute was found to have the value "pro- reviewed in Section 4 of the report, which
cedure, subsystem, or system". represents a cross section of cut .nt metho-

dologies from three categories: research.
commercial, and industrial. The first

3. Subjects of Software Development Metho- category relates to approaches which are still
dology Reviews in a laboratory environment (usually within a

university). The second refers to methodolo-
Ada is a registered trademark of the U.S. gies available for purchase on the commercial -

Government. Ada Joint Program Office market, in the public domain, or as

825

markt, n te pbli doain oras r.

. . ,,
....-.... * *., *.-"* ~ * . % * * * ".-""%-

government-furnished equipment. The last Performance evaluation includes the. -

refers to approaches in use within industry technology for specifying and evaluating per-
and not generally available outside a particu- formance characteristics of a system, includ- .'

lar company. ing timing, accuracy, and adherence to . '
specified functional characteristics. Testing
tools to monitor and analyze system execu-
tion are included in this area. Performance is

4. Technology Areas Addressed important in deciding whether an existing
component will satisfy the requirements of

o Language Technology the system being built.

Maintenance includes the technologyo Structuring Methodology for correcting errors or modifying reusable

software. Configuration control tools and
o Design Environment procedures, testing tools, and system moni- .

toring tools are in this area. This support is
o Performance Evaluation essential to software reuse, since the reusable

components used in new systems come from

Maintenance libraries that are in the maintenance phase of
0 Mthe software life cycle.

o Market Factors,.
Market factors are the viability attri-

butes that influence the decision to adopt a
methodology, including whether an imple-

This report reviews software metho- mentation of the methodology exists, the
dooogy in terms of five technology areas del- cost of acquiring the methodology, and if the
ineated in the statement of work. In addi- methodology is available. Even if a metho-
ion, Market Factors has been added to dology satisfies all technical demands, market

include non-technical aspects of the analysis. factors will determine if it is viable.

Language technology includes languages 5. Conclusions from Reviews
used for describing a system at each stage in
the software development process, including o No methodology provides code-level
specification languages, design languages, reuse between dissimilar application
implementation languages, and test areas.
languages. This is important to reuse since
reusable components require precise
definition. o No methodology for large-scale

development provides a reliable storage
and retrieval mechanism for a code-

Structuring methodology is the metho- level library.
dology used for synthesizing a new system
from reusable software. Such a methodology o Reuse of personnel is prime means of
attempts to classify software for later reuse, reuse oftaren sry.
and provides the necessary tools and pro-reisowennu,
cedures to help the designer define, store,
retrieve, and modify reusable components. o Language technology, by itself, is only a

component of the software reuse solu-

Embedded software system design tion.
environment technology includes the tools,
procedures, and facilities used in the o The larger the breadth of component
development of a system. This is important reuse, the greater the need for formal
to software reuse because the environment specifications.
provides continuity among the various appli-
cation systems that reuse software.

826

.... :

0 The level of specification required for Language Technology- component ofro
reusable components is more formal the solution to the software reuse problem.
than is currently used in large-scale A language which allows the creation of port-
developments, able and re-linkable components can facilitate

reuse of low-level primitives. But the
inherent variability of higher-level functions0 Information explosion counterbalances --

0 dall but precludes their incorporation into a
language as reusable elements. .,

0 Specification language is more impor- Breadth of Reuse- greater the need for
tant than the implementation language. formal specifications. For example, when

reuse crosses organizational boundaries, the
0 Only methodologies surveyed using for- need for precise component specifications

mal, semantic descriptions were Gypsy increases substantially.
and HDM.

Degree of Formalism- reusable com-
0 Research methodologies concentrate on ponents is more formal than is currently used 7

small well-defined systems. for large-scale system development.
Specification techniques for large systems

0 Industrial methodologies address large- usually address syntax and inadequately han-
scale systems that are incompletely die semantics. The description of a reusable
defined, component must include a semantic descrip-tion as well as the syntax definition of the

I. beforeoitnissimplementedo A methodology should be defined component's interface.
before it is implemented.""

Information Explosion- specifications is
counterbalanced by our inability to deal with

The following conclusions can be made large volumes of information. As a

1 on the basis of the methodology review: specification becomes more formal, the
amount of information in the specification
can easily become overwhelming.

Between Dissimilar Applications-
' examined which purported to provide the

reuse of source code between dissimilar Importance of Specification Language-
application areas. In fact, where source-code language used to describe a component is
reuse occurs at all, it happens within narrow more important than the programming

language used to implement the component.application areas. A specification is the foundation on which a
component is built, tested, maintained, and

Source-Code Library- development reused.
efforts provide a reliable way of storing and
retrieving items from a code-level library.
Some methodologies were able to implement Formal Semantics- formal, semantic
libraries, but the retrieval of the correct item specification techniques were those that are
from the library was manual process. (Which used to produce formally verified software
was often so difficult that it was easier to (e.g., Gypsy and FDM). However, they have
code a new item than to look for one to not been applied to large-scale software

reuse.) development.
p

Importance of Personnel- reusing Research Methodologies- small-scale

software products is via the reuse of the per- systems that are well-defined.
sonnel who created the products. Much of
the knowledge which advanced methodolo- Industrial Methodologies- deal with
gies attempt to capture is already resident large-scale systems that are initially incom-
within these knowledgeable personnel. pletely defined. Incomplete definitions are r

.- 27

not necessarily anyone's "fault", since the component based on the organizational dis-

development process is highly iterative. tance and the life-cycle phase product chosen.
The longer the distance and the closer the
life-cycle phase product is to the code level,

Methodology Implementation- it is the greater the need for formal semantic
implemented. This may appear to be obvi- d
ou.Hwvrtenme.o sfwr that cannot provide the level of semantic r
tools" lacking an underlying methodology he

description required.~~~says otherwise. '

6. A Procedure for Choosing a Methodol- Finally, determine the starting point for %

ogy system development in your organization
I. (e.g., requirements). Eliminate those metho-

1. Determine size of system you intend to dologies that do not address the software
build, life-cycle phases from your starting point to

the phase in which software reuse will occur.

2. Determine breadth of problem domain. G t r e t hGiven this procedure, let us choosea

methodology for a large, real-time, embedded
3. Determine organizational distance for communications system for ships, planes, and

reuse. ground stations. Assume that the individual

subsystems will be built by different corn-

4. Choose life-cycle phase for software panies using as much reusable software as

reuse. possible and that the starting point for any of
these systems is a set of requirements. (To

5. Determine level of semantic description carry out the procedure, the information con-
tained in Figure A of Section I and the

required. detailed methodology reviews in Section 4 of "* ,
the delivered report should be used.)

- 6. Choose methodology compatible with
the above. On the basis of size, SCR. RNTDS,

- ISDOS, SREM, SADT. Hughes, Grumman,
and Boeing are possible candidates among the

The following procedure can be used to 19 methodologies reviewed. However, when
select a suitable methodology: problem domain is considered, this list is

reduced to SCR. RNTDS, Hughes. Grum-

First determine the size of the system man, and Boeing. 1
n that is to be built and the breadth of the

problem domain that it will address. Elim- Since the organizational distance will be
inate those methodologies that cannot large. reuse should occur above the code

address systems of your size and problem level (e.g., requirements, specifications, or
domain. design) and a high degree of semantic

description will be required. Of the metho-
Next, determine the longest organiza- dologies in the reduced list, only SCR pro-

tional distance between the people who will vides more than adequately covers the entire
produce the reusable software and those who software life-cycle.
will reuse it. Based on this distance, choose
the life-cycle phase in which the software will Another factor that has not been men-
be reused. Unless this distance is small, the tioned (but occurs within the set of metho-
level of reuse should be above the code level dology attributes) is the level of automated
(e.g., requirements. specifications, or design). support. Unfortunately, the SCR methodol-

ogy lacks the necessary automated support
Determine the level of semantic for large-scale system development. The

description required for a reusable organization choosing a particular develop-
ment methodology must decide how much r

828

p"

':--".'. ".. ,, : ".'. "',.''. .-. ,' ,-.-"..."..-...........".".."."."."...'..........-........-"..-...'.-- %€* .*,S-€-''--.'C

F7- -17-7FT

automated support is necessary to make the substantial amounts of software to support
approach practical. the project in the field. This includes mainte-

nance and diagnostic packages, data reduction
and analysis packages, simulators, and exer-

7. Recommendations cise generators for training. The combined U
size of field-support software often exceeds

o Provide standard software development the size of the application software.

environment.
Automated support for the generation

0 Reuse software development environ- of formal documentation should be provided.
ment. The reuse of software requires the generation

of documentation that is more formal to
ensure that the software to be reused

0 Reuse field-support software. matches the requirements of the new system.
The preparation of documentation for this

o Provide automated support for docu- process is time-consuming, tedious, and
mentation. error-prone. Automated tools can help the

user work more efficiently, and enforce the

0 Reuse requirements, specifications, and level of formality needed.
designs.

It is apparent from the review of the
Design for reusability. methodologies that reuse of source or objectcode is generally beyond the scope of the

approaches examined, unless the problem
o Restrict application area. domain is highly constrained. Therefore,

higher-level software products should be
reused with the relative de-emphasis of

Based on the evaluation of the various source-code reuse.
methodologies, and the review of the per-
tinent literature and current practices, there Software that is to be reused must be
are several recommendations that appear to designed for reuse. Attempting to reuse com-
be obvious. Many of these could imple- ponents that were not designed for reuse will
mented without risk, and could improve the probably fail.
efficiency of software reuse development.

As the application area becomes larger
A standard software development and less-understood, the ability to reuse

environment should be provided that encom- software rapidly diminishes. Therefore, the
passes the entire software life-cycle. The application area in which software is to be
quality and ease of use of the software reused should be restricted to well-
development environment can make a understood problems.
significant impact on the ease of developing
software and the quality of the software
which results. Section II. An Example Successful

Software Reuse
There are numerous instances of the

reuse of the software development environ- 8. Productivity Improvement Using C-
ments. However, there are still cases where ADGE Software at Hughes
the support tools and procedures needed to
create a body of software are created largely Quantitative benefits associated with
from scratch for a particular project. software reuse are difficult to capture. At -:

Hughes, a Common ADGE (C-ADGE) pro-
ject has been established to allow the reuse of
a segment of air defense ground environment

ment software, many projects require (ADGE) software across multiple projects.

829

,*2

V -. --....4

30-' -

V'.,

---- WithOut C-ADGE a 49 man years L*,
25- , mWith C-ADGE a 31 nrn years

= rl~l'n -. , -

20- r7 .".r,7

IO"

1 2 3 4 5 6 7 8 9 10112 1 2 3 4 5 6 7 8 9 1011121 2 3 4 5 6 7 8 9 101112".'.

1982 1983 1984.," .-

ProduCtivity improvement is measured by comparing the number of engineers I .

reqluired If each pro3ect using C-ADGE packages were to build that software " -
themselves versus the number of C-ADGC engineers providf'ng the pckages. "".'

Cost savings history has also been maintained requirements specifications and baseline"'""

during a portion of this effort. modifications to the standard existing pack-..
aeweecompleted. These packages were ---

Saigss wer

The similarity of ADGE system then implemented.=.,-.,

requirements makes ADGE software a fertile --.
area for increasing productivity, by increasing The cost saving was based upon the -.
software reusability. C-ADGE is a formal reduced labor requirements when two actual : .
effort which has as its objective increasing projects used the same software package.-.-
software reusability by generating product Each project did not have to acquire duplicate
line software for the operating system, sup- staff" to develop the functionally identical
port utilities, and diagnostics to be developed package, as has occurred in the past. Addi-,""---
and maintained by a functional organization tional savings were obtained through reduced
for use by all ADGE programs. Product-line demands for the Software Development Sys-"'"'---

temn computers and consumables.

4.

. ..

• ~~~~~. -.... ,- " -.-. ,..-.- ,.,.,.-,,',%-',%.''., ',',

• . °

An Overview of the Software Design Library ."

.""* J. Hearne
J. Winchester

Hughes Aircraft Company
Ii. -

1. INTRODUCTION ways, would greatly increase the potential for
The potential for application of corn- reuse of existing software modules.

puter has grown rapidly in recent years, due .-
primarily to the decreasing cost and size of For example, the Hughs Air Defense
computer hardware components capable of Radar (HADR) is a system utilizing an
performing at increasingly high rates of embedded computer for controlling a single
speed. As hardware technology advances, radar antenna, processing radar returns, and
more and more complex systems become forwarding target information back to a cen-
technologically feasible - provided the tral site. Successive installations of the
software needed to control and integrate such HADR system typically include substantial
systems can be produced. Unfortunately, reuse of software developed for previous
software technology has not advanced at the installations, but also typically require new
same rate as hardware technology. More features and modifications of earlier capabili-
powerful,higher order languages (e.g., Pascal, ties. Thus, new software subsystems must be
Ada) and associated development tools and developed to augment or replace previous
techniques (e.g., structured design and cod- ones, and these new subsystems are often
ing methodologies) are making significant very similar to these they replace. For exam-
contributions. Nevertheless, these efforts pie, the
alone do not appear adequate to cope with human interface in one HADR installation
the crisis arising from increasing system corn- had to be replaced by a new version when the

* plexity and spiraling production/maintenance originate display station was replaced. Yet,
costs. essentially the same information was to

displayed, and essentially the same kind of
The dramatic decrease in the hardware operator actions were to be implemented. If

cost/performance ratioachieved over the past the human interface subsystem had been
decade stems, in large measure, from an composed of readily manipulable software
extensive use of "building block" components, the amount of subsystem
techniques. More and more complex func- rework required would have been substan-

tions are being embedded in single, relatively tially less.
general purpose components, which can be
readily and quickly combined to produce This paper reports on a system, called
even more complex hardware systems and the Software Design Library (SDL), that pro-
subsystems. vides computer assisted design techniques to

To a very limited degree, by making use of facilitate reuse of previously built software
standard subroutine libraries, particularly for modules in designing and building new sys-
performing common mathematical functions tems. Section 2 reviews related work and
(e.g., sine, cosine), software developers have discusses how it compares with the SDL.
employed building block components in a Section 3 presents an overview of the SDL
similar way. But such subroutines are gen- itself, while section 4 describes its application
erally applicable only at the lowest design lev- to a large command and control system pro-
els and are normally used at the discretion of duct line. Section 5 draws some conclusions
the implementor, where they provide little or based on this application experience, and sec-
no benefit to the software designer. The tion 6 discusses future directions in refining
ready availability of more powerful software the system and applying it to other applica-
building blocks, combinable in more general tion domains.

831

•j. .
::,= : ,, .:.: . . .-.-..... . .. ,.....

2. RELATED WORK level sufficient to adapt it to new require-

As noted above, software reuse has not ments, and (2) the heavy impact that perfor-

been applied effectively to alleviate extensive mance properties of software components
rework of applications software. Most reuse have on the design of real-time embedded
has been accomplished by providing libraries computer systems. After surveying other

of general purpose, low-level functions, such approaches for dealing with these issues, a

as mathematics and statistics libraries. These method of approach was developed. The
kinds of routines frequently dictate the use of SDL views software as realizing a set of pro-
particular data layouts, which must be rigidly gramming goals which can be described in
adhered to by any calling program. and thus relatively high-level terms, terms normally
impose potentially unacceptable constraints suitably to requirements documents. Such
on data representation. Furthermore, the goals can be realized by different strategies.
reuse of software components need not be or implementations. The goal identified for a
restricted to computer programming language given system frequently arises in future sys-
statements (source code) or their translated, tems in the same product line. The SDL
machine language form (object code). thus presupposes that the high-level descrip-

Horowitz and Munson (1) discuss a wide tion of software goals can be made to
range of potential approaches to software correspond to pre-exiting software com-
reuse, encompassing requirements and design ponents. To support this approach, we
as well as code. These approaches include developed a prototype Software Design
program generation, formalized expression Library system. The SDL facilitates the con-
and interpretation of requirements, and the struction and application of catalogs of malle-
reuse of previously generated designs as well able components that are based on the
as code. Freeman (2) proposes research semantics of an application domain, in a
toward the reuse of software products at all hierarchical way. The SDL also facilitates
stages of the software development cycle, their configuration for reuse without requir-
Neighbors (3) has developed a software tool ing the deep understanding of each
based on Freeman's approach. Work contin- component's structure. Two roles were
ues on that project in the form of defined. The cataloger supports the design
classification and application domain analysis. activity for the first generation system of a " "'

product line. He has expertise in the subtle
design issues, tradeoffs, and functional

In spite of these advances, however. requirements that influence the use of
there is still a need to demonstrate the practi- software components. The designer of a
cality of these approaches in large scale appli- future system in the same product line uses
cation. As yet, software reuse has only been software cataloged for previous systems. He
employed successfully in isolated, well- has expertise as the general application area
understo9d problem areas such as report gen- and in specific functional requirements for a
erators and compiler-compilers. The problem new project.
of reusing complex, real-time aplication
software, from one project to another within
a product line, has not been effectively Thus, for the cataloger, an interface was
resolved provided for constructing catalogs of com-

ponents and the semantic models which
3. SYSTEM OVERVIEW AND describe their application. For the designer,
RATIONALE we provided an interface suitable for

configuring application systems solely from
requirements expressed in terms of the

Our objective in developing the application's specific vocabulary. We believe
Software Design Library was to support that separating the roles of cataloger and
effective reuse of software components in designer encourages higher generality on the
large project environments. Two impediments part of program developers, and simplifies
stood out clearly as having major importance the exercise of deeper practical knowledge
(I) the difficulty of forming a deep under- about the application area on the part ot
standing of existing software o-peration at a designers. a t-i a

832

3.1 General Characteristic of the SDL in the form of an applicability predicate.

As noted above, the SDL supports the When the SDL is used by the designer to
- logical naming of goals as groups of pro- select strategies for implementing a required j

cedures and data structures, allowing any goal, it evaluates the applicability predicate
number of versions (strategies) within the for each strategy. Those strategies deemed I
same logically named goal group. By describ- applicable are deleted from the candidate list.
ing the subtle semantic differences among If a designer's specifications cannot be met
various versions within a group, the desigt~er by an available strategy, the SDL notifies the
has greater flexibility in configuring a specific designer that his specifications are not imple-
goal, yet need not consciously select the indi- mentable within the catalog. When a goal
vidual version to be used. Each of the ver- can be realized by a choice of many applica-
sions represents one possible refinement of ble strategies, the cost of each strategy
the goal, but is closer to realization in two becomes an influence in the selection. The
ways: (1) each version has associated source SDL allows the cataloger to declare a cost
code forming a partial implementation, (2) function in terms of weighted resource con-
and each version also has an associated list of sumption over any number of resources.
subgoals that are subordinate to it, that are The cataloger declares resources and
required functions for completing the goal, expressed the resource consumption profile
and that form a problem reduction network for each strategy in terms of design criteria.
among all goals in the catalog. The interleav- During the search for an effective application
ing of goals and strategies leads naturally to a program, the total cost of each candidate pro-
problem reduction search technique that gram is used to direct search, so that the
allows the definition of high level strategies most resourceful system meeting designer
to be stated loosely in terms of subgoals, with requirements is the one configured.
design criteria, operational constraints and
the various costs of alternative configuration The operation of the SDL can be sum-
playing a guiding role in the design process. marized as follows. The cataloger creates the

goals and strategies in an SDL catalog, and
There is a one-to-many mapping relat- provides characterizations (including applica-

" 1ing each goal to a set of alternative strategies bility and cost expressions) of each. The
for implementing that goal. Achieving the designer states a high level goal for the SDL
goal requires the (eventual) adoption of one to configure. Given the designer's high level
of these strategies. There is also a one-to- goal, the SDL attempts to construct an imple-
many mapping of each strategy contained mentation tree by combining the Or-And
within a goal onto names of subgoals, all of fragments until all tip nodes contain only
which must be achieved if that strategy is to source code (or other text), with no subgoal _
be effective in implementing its containing references. When the designer has com-
goal. The structural effect of this relationship pletely configured an application system, the
between goals and strategies is that the cata- strategy inter-connection tree required to
log contains a collection of three level Or- implement the system is stored within the
And tree fragments' the root node of each SDL database. and is then used to configure
fragment is a named goal with Or structure- application programs by manipulating the
the middle level of And nodes corresponds to "pictures" (program source text and/or .
the various strategies for implementing the design-level descriptions thereof) that
rooted goal, and the tip level of nodes correspond to the selected configuration of
corresponds to the names of subgoals for the strategies. The source program created in
strategies at the middle level. this way can be compiled and executed.

Within the limits of its ability to distinguish
between cataloged components and their rela-

There are two major attributes associ- tionship to the application area, the SDL uses
ated with each strategy that determine the catalogued descriptions to act as an infor-
whether or not it will be selected in a given mation designer se that the human designer
design session: applicability and cost. Thus, can concentrate on exploring system require-
each strategy description includes ments. Productivity improvement is depen-
specification statements that describe its dent on the savings enjoyed by designers who -
applicability to the designer's requirements, use a catalog to create systems versus the

833

cost expended by the cataloger to create the (which can be associated with totes) for
descriptions which the designers use. display.

4. AN EXAMPLE A major portion of CCIS software for
totes has been cataloged, resulting in a total

In setting out to demonstrate the viabil- of 90 modules in the catalog. The associated
ity of the SDL in the context of a realistic catalog graph contains a total of 116 goal and

applications, military command and control strategy nodes, and has a depth of 7 levels of
information system (CCIS) was selected as design goals. The catalog was developed to
an appropriate application to catalog. CCIS is allow post processing two forms - the actual
an application which typically involves large software design (represented by structured
systems that must operate in high- English, or "pseudocode"), and design docu-
performance, high transaction rate environ- mentation in the form of pure text. (There
ments on distributed system architectures. was no actual running source code available
This is precisely the situation which leads to a for cataloging at the time of cataloging.)
series of customized systems in a common
application area. Thus, the payoff of applying There are two costs measured in the
software reuse technology to this area is CCIS totes catalog. The simplest to measure
potentially great. The CCIS on which the ini- is lines of pseudocode, with each strategy
tial catalog is based is a large, multisite node incorporating its portion of that cost.
display system that includes general applica- The other cost, system response time, is a
tions software whose functions are (1) to much more significant cost for CCIS. It is
display text and graphical data; (2) to gen- also more difficult to measure and is not con-
erate. communicate, and process messages; veniently modeled as a sum of constituent
and (3) to maintain a data base and notify costs. Hence an estimated average system
selected users of changes to the database. response time was assigned to each strategy
This software supports a wide variety of spe- at the highest level in the graph at which the
cial applications software, performing func- strategy distinction exists. All subordinate
tions in the area of availability, logistics, strategies are assigned a system response time
weather, threat response, rescue operations, cost of 0. !.)
and many other areas. Processing at each site
is allocated among host computers, worksta- T.te asb d
tions processors, and database processors to The CCIS totes catalog is subdivided
optimize system performance. If this func- into the three functional areas mentioned
tion allocation is varied, a different strategy earlier - tote formatting (including tote, ini- - -

for implementation results. tiation and tote display file access primitives),
text transfer, and function key formatting.
Each of these areas is cataloged in a hierarch-

A subsystem of CCIS, involving the ical fashion, reflecting the underlying struc-
display of "totes" to an operator, was the first tured design. The catalog representation
major program to be cataloged. Totes are decomposes the formatting of a tote for
text data for display. They are generally display into the formatting of the constituent
tabular, with (perhaps) repeating fields of parts of a tote (header, nonscrollable data,
slowly time-varying data. Their structure is vertical lines, page number, page data), and
defined by setup preprocessing. Totes can be central processing necessary to display the
invoked for generation and display by selec- tote. It is important to note that this
tion from a menu, selection of a function representation of text transfer is in terms of
key. (special function keys), special applica- visible components of a tote which can be
tion programs, execution of a sequence file, related directly to tote format requirements.
monotoring of other displays, and display The intent is that this will provide "hooks"
transfer between workstations. Tote format- inside the catalog, allowing reuse of selected
ting builds the tote display file and handles subsystems as appropriate to the require-
processing related to the tote. Text transfer ments of a new system.
converts information in the tote display file
into a format suitable for display. Function ,
key formatting formats function key sets

834
,- ..

In this catalog, several goal nodes have assess the relevance of software in an

two strategies - one if processing is per- existing catalog to their problem.
formed in the host computer and one if pro- Second, using building blocks to
cessing is performed in the workstation pro- represent functions in a catalog decom-
cessor. The catalog reveals the pervasive poses a function in a manner consistent
effect such a choice of processor has on the with stepwise refinement and structured
software, even at the language independent design, resulting in small, relatively N
detailed design phase. This illustrates the encapsulated and well-understood build-
importance of developing design approaches ing blocks. The semantics of these
which hide the architecture from as much small pieces should be easier to charac-
software as possible.Note also that the catalog terize, leading more easily to a charac-
is quite finely structured, with more catalog terization of the application domain of
nodes than modules in any one implementa- the problem area in general.
tion. The reasons for this are as follows:

(5) Finally, it should be noted that the cata-
(1) The existence, and pervasive extent, of log provided empirical evidence in sup-

two strategies results in multiple ver- port of information hiding as a design
sions for many of the modules. Thus. principle to enhance the reusability of
counting module versions, the number the resulting software. Primitive rou-
of nodes is smaller. tines were written to allow access to the

Tote Display File - a major data file
(2) An effort was made, for the sake of the needed by several parts of the system "experiment, to include catalog structure thus providing functional access andwheer it could reasonably be hiding the internal file structure from

justified. In practice, fewer nodes the rest of the system. If this approach
would probably be used. had not been taken, it would have been

very difficult, if not impossible, to
encapsulate tote display information in

(3) To guarantee that any implementation the catalog. This approach was taken at
selected from a catalog contains a logi- a minor overhead cost (for calling prim-
cally complete and consistent set of itive subroutines)in order to provide
source code statements, it is occasion- uniformity and control of tote display
ally necessary to define nodes which do information among all using functions.
not perform "visible" processing. Another part of the system did not use

this technique. The resulting data cou-
(4) Most important, a guideline was pling will make this area more difficult

adhered to on CCIS to create a goal for to reuse in another setting.
every "atomic visible" function. A visi-
ble function is one which can be 5. CONCLUSIONS
observed and related to a requirement.
For example, "display tote" is an opera- Be
tion performed by the system which Based on cataloging experience to date,
results in text data appearing on a the following observations can be made:
display screen; this is a visible function.
However, it is not atomic; it is com- (1) Software can be cataloged, using the
posed of smaller "building blocks", such Software Design Library, for potential
as "display header", "display page reuse in future systems. The result is a
number", and "display data". The "structured catalog" which contains a
significance of this guideline is two fold. representation of the design structure in L.
First, the visibility of the functions a form that reinforces stepwise decom-
associated with catalog goals allows position. A cataloged system is thus a
designers of the functions associated synthesis of subsystems which can be ..,._
with catalog goals allows designers of used as building blocks to configure
future associated with catalog goals new systems. The quality of a catalog is
allows designers of future systems to tied to the quality and style used to

835
o

• .-

, ., .• .., - -. ." ,,': - . -- --: - - - - .. -" . - -.. . -- -, . ,, .. , -" . , ." , ., ,

design the system. Observations below documentation facility to provide
specify design and cataloging guidelines definition of terms as used on the pro-
which promote the reuse of software. ject, an abstract describing the functions

performed by a subsystem in the cata- '

(2) Information hiding is a key design log, assumptions and limitations of the
guideline which significantly enhances cataloged software, and a discussion of

softwaresalient design issues (such as the use of
besftwre andse.T was m ed te information hiding). Information about~~~~be true and was confirmed by the ''[.-

experience gained to date in cataloging the catalog itself can also be provided, .
such as an indication of relatively self-,' CCIS software. Specifically, the tote,

display modules defined which hide the contained subsystems which are suitable ,

details of the file structure and provide for reuse in the modified context of

only the information the caller wants. another systems. The designer of a
Certain other data structures in CCIS new system can then browse through
software do not have similar access rou- the documentation supported by the
tines, and in those cases the cataloged Software Design Library to aid in the

extraction of software subsystems for-.-
software is closely tied to the data struc- ex i su
tures. The degree to which software reuse.
can be reused in future projects with
slight differences in requirements will 6. FUTURE DIRECTION : .i
depend largely on the degree such data
coupling can be avoided. Thus far, we have formulated concepts

to support software reuse, built the prototype
(3) Processor independence is another key Software Design Library System to imple- .

design methodology which enhances ment these concepts, and used it to catalog
software reuse. When performance software on two projects. Based on this
considerations caused the reallocation experience, the following activities are
of processing from the host computer planned for the future:
to the workstation processors, the
software was substantially changed at (1) Rehost the Software Design Library %. t" -
the detailed design level. This problem (SDL) on a larger system. This step is
is not as well understood as information necessary for using the tool in a produc-
hiding and has some code-level implica- tion mode.
tions (such as programming language
used) which cannot always be avoided.
One possible approach to reduce the (2) Reuse software from the existing CCIS

impact on detailed design of reallocation catalog on future command and control
of processing would be to implement a systems. Several candidate systems are
mapping (perhaps an extension of the in the preproposal stage and are being
compiler) of processes to processors, analyzed to assess the feasibility ofwith the detail allocation of processes to using software from the CCIS catalog.

processors in a few modules, with a Another project family (trainers) is also

common communication mechanism a candidate for using the SDL.

(such as mailboxes) among distinct
processes or tasks. (3) Develop methodology guidebooks for

designing and cataloging future
(4) Visible functionality of design goals in software, particularly software to be

the catalog enhances the understanding designed and/or coded using DoD's
of the representation of software in the Ada language. A working group is
catalog. As mentioned earlier in refer- currently addressing design methodolo-
ence library, can be used to convey gies in the context of Ada which.
understanding to support reuse of the includes several features intended to
subject software in the catalog. A for- facilitate software reuse. One such
mat has been developed to use the feature is the Ada package, which con-sists of two parts: (1) the package "

836

...

specification defines an interface to ser- storage. But some performance ineas-
vices (such as searching and sorting) ures, such as system response time, are
that are used by other parts of a pro- not adequately measured as the sum of
gram; (2) the implementation of the contributions from constituent parts of
services promised in the specification is a system.
contained in the package body. Natur-
ally, the specification might be imple- (7) Define and implement concepts and . ,
mented in several different ways, and tools to hide architectural details from
different implementations may be the implementation of projects. Some
appropriate to different costs and appli- details (such as scaling precision and _

cability requirements. In Software bandwidth) cannot be hidden for per-
Design Library terms, the alternative formance reasons. But it may be possi-
bodies for a given package specification ble to develop a general-purpose com-
may constitute differing strategies to munication protocol, for example,
achieve a programming goal. which would localize the project-specific

protocol to a small subset of a system.
(4) The other feature of Ada that is at least

in part directed to the matter of reuse is (8) The language of cost and applicability is
that of generic program units, especially presently restricted to sentential logic.
generic packages. Generics are a means Whether the introduction of quantifiers
of parameterizing program units by type would add usefully to the expressibility
and subprogram--procedure or of the system is certainly of interest.
function--as well as value. For exam-
pie, one may thus define in Ada a gen- (e c-o-
eralized sorting procedure which sorts (9) Develop a configuration control scheme
with respect to several ordering rela- and support tools to modify the catalog
tions. The particular ordering relation whenever the underlying design is
would be provided when the generic modified.
procedure is "instantiated", by giving REFERENCES

k4O the subprogram a particular function
which defines the ordering relation. (1) E. Horowitz, and J. Munson, "An

Expansive View of Reusable Software",
(5) Develop a better understanding of the University of Southern California.

semantics of a programming goal in a
software catalog. Ideally, such goals (2) P. Freeman, "Reusable Software -
could be viewed as primitives at a Engineering: A Statement of Long-
sufficiently high level of abstraction. Rngeneerch Obties", U n tRange Research Objectives", University--.
They could then be viewed as exten- of California. Irvine, Technical Report
sions to blocks used to compose new 159, 10 No vem e 1980.
products in the same product line. The
semantics of a goal would need to
account for the possibilities inherent in (3) Neighbors, J. "Software Construction
different implementation strategies. Using Components," Technical Report
More importantly, the problems raised 160, University of California, Irvine.
by the fact that such goals are not self-
contained or "closed", but have inter- (4) J. Hearne, Software Design Library
face dependencies with other goals, Cataloger Handbook, Hughes Internal
need to be studied. Report, 1982.

(6) Use practical experience to develop (5) R. Cooper, MetaCAD: A Knowledge
ways to capture performance and cost Based Software Support Environment.
measures in a catalog. Currently, all Hughes Internal Report, 1981.
costs are modeled incrementally. This
is fine for costs such as time and (6) Hansford J. Myers, Reliable Softwaie

Through Composite Design, Van Nes- r
trand Reinhold, 1975.

83'

Notes on Cataloging Methodology "'
SUPPORTING DOCUMENT TO:

An Overview of the Software Design Library

Hughes Aircraft Company
Based on the experience cataloging directory node approach is avoided, and

CCIS software and consideration of issues to the size of the catalog is reduced. The
be faced in reusing this software on future disadvantage is that, by starting at the
CCIS systems, some observations on design default node, the designer would gen-
and cataloging methodologies to promote crate the document for the entire cata-
software reuse have been made and are dis- log and would have to wade through it
cussed below. In reality, methodologies for to find what he wants. The documenta-
designing and cataloging software impact each tion facility added to the SDL this year
other. In the discussions below, it is supports either approach.
presumed that the software design team for a
new project has access to catalogs of related
systems in the SDL. * * L•TOTES• _

* S1

1. Include "directory nodes" in the catalog
to aid the designer of a new system in
determining the relevance of software This catalog contains the processing to
existing in the catalog (see Figure 1).
The highest-level directory node is the support the display of totes in command
default starting node for the catalog, and control information system. Totes-
with one strategy which has no subgoals are text data for display. The process-
and no source or object code. It is ing is divided into three areas:
purely a documentation node which
tells the designer how to use the cata- GOAL NAME FUNC-
log. In addition to describing require- TION
ments and design information about the
system, it also describes the constituent TOTEFORM
"visible" subsystems and gives their Tote Formatting defines the Tote
corresponding goal names. This tells the Display File, which is the major data
designer how to access the part of the file defining totes for display.
catalog of interest to him. The direc-
tory node must also give the goal name FTDTRANS
corresponding to the highest-level goal Formatted Tote Display Transfer
in the catalog containing the actual extracts data from the Tote Display File
software. and converts it into a form suitable for

Variations on the approach exist. The display as text data.
subgoals referred to by a directory node
could in turn be directory nodes for FKFORM
subsystems, which names the start goal Function Key Formatting formats a
for that subsystem and the directory variable function key set associated with
nodes for subordinate subsystems, giv- a tote for display. It also formats the
ing a layered-menu definition of the fixed function key set and its subfunc-
catalog contents. tion key sets for display.

Another approach is to embase this This is a documentation node which
information in the catalog structure provides a high-level description of a
without using separate directory nodes. subsystem in a catalog. It tells the
The advantage of this approach is that designer the names of its constituent
some redundant structurizing in the subgoals to allow the designer to choose

r

838

... , .a A . . -. . .A .. - , . - . -_"

[...-• . 'v: -:-,.. -. - -;'; 'v ~ .. . -.. -... -,.v '-'.- .- '_. . -. . -" . . -, -" -" - ,- "-" . .

the subsystems he needs from the cata- bit ASCII character codes, relative posi- r
log and access them. This directory tions of the keys on the display, display
technique, supported by the SDL docu- control information, and processing
mentation facility, allows the designer control information which indicates ,.
to use subsystems as building blocks to whether the function key processing is U
form a new systems performed in the host computer or -

workstation processor.

Abstract
-..- ..

2. In addition to providing functional Function Key Formatting formats func-
information about the composition of tion keys for display at an operator con-
the catalog, the documentation facility sole. If a tote is to be displayed and the
should be used to describe its content. tote has an associated VFK set, Func-
A format has been evolved to associate tion Key Formatting formats the VFK
descriptive information with selected set for display in the VFK area on the
nodes. This format involves the screen.
definition of terms as used in the sys-
tem, an abstract describing the func- Assumptions and Limitations
tional processing performed by this
node and its subordinates, the calling Function Key Formatting requires the
sequence to perform this function, any existence of the Function Key Set
relevant assumptions and limitations, Definition File containing function keys
and related design information such as in display message with format. Details
the principle objects and operations on of this file are referenced extensively
them in this subsystem. It is important throughout Function Key Formatting.
that the terms used be defined precisely
as used, since terminology can vary 3. The structure of the catalog should
even on similar projects. It is also cru- reflect the structure of the underlying shu

cial that limitations be explicitly noted; design. This is necessary to allow the
this is probably the most important SDL to extract the appropriate software
source of information to a designer to perform processing for a selected
about the reusability of the software. subsystem in the catalog. Indeed, the
This section should include global data talog for a new application area
structures assumed, performance con-
straints, architectural constraints and should be built by design team leaders

as the system is being designed. This
any other information describing the structural correspondence implies a
presumed context of the subsystem. hierarchical representation refers to theSee Figure I for an example of text stepwise decomposition of "larger" goals
from the CCIS catalog as supported by in terms of "smaller" subgals. This
the documentation facility. "hierarchy" is not strictly a tree struc-

ture, but can be represented as a tree

DEFINITION OF KEYWORDS (perhaps by replicating goals, as is done
in structure chai'ts). provided the goal-

VFK a variable function key. part of a strategy network embodying the decom-
VFK set which is associated with a tote. position does not contain any loops (in
When a tote is displayed, its associated which a design goal is refined partially
VFK set is also displayed. A VFK set in terms of another instance of thatis associated with a screen when the same goal). Such hierarchical represen-passive screen is made active, the tation allows a designer to select a
display VFK set changes. "large" goal and automatically obtain the

details inherent in the decomposition.
This supplies on organizational struc-

Display Message Unit ture on the content of the catalog, and H
thus helps to manage the information

A format used to represent information contained in the catalog and reduce its
for display. This format consists of 7- complexity.

839"-" ?[.T..
'I

• . '-,'- -' -1 : -,.% ., -. -.. , 1..'..[..2..1 ..-].-- L.],L . , , , "-::-]....-. ,.. . .].,. ,-.,.,:..., , .. ', ",- -" ,''.'" " ,

4. Use visibility of processing as a guide- These "things that can happen" are the
line for the creation of goals in a cata- operations and will be the goal nodes in
log. If the processing corresponding to the catalog. These will tend to relate to
a node in catalog represents an observ- system requirements at high levels of
able phenomenon to a designer of a the catalog structure and will provide
new system, he is in a position to assess "hooks" as in (4).
its relevances to his needs. This pro-
vides conceptual "hooks" into the sys-
tern which can be supported by a Second, the catalog can represent a
menu/directory approach as in (1 form of object hierarchy. In the design of
These "hooks" should, at least at high the software cataloged from CCIS, access
conceptual levels of the catalog, primitives were defined to provide contents
embody system requirements (since of the Tote Display File without the need to
they represent natural "world views" of know the file structure. The Tote Display
the system objects which are invariant File (as represented in the catalog via the
across all implementation strategies for primitives which access it) is various parts of
the system), and the catalog is then CCIS defining the hierarchy. In fact, this
seen as a mapping of system require- approach can be extended by grouping the
ments into design and implementation. primitives into subsets called by each subsys-

tem, each pair of subsystems, etc. The using
5. The catalog should reflect the objects subsystems access the subobjects they need.

and operations in the system conceptu- A "phantom" goal node serves to group the
ally and hide their structure as much as subobjects together to form the complete
possible. This depends largely on the Tote Display File; this phantom goal is not
design approach taken, but has two referenced by any other subsystems and
applications for cataloging. First, after merely unifies the hierarchy. In fact, the
identifying major conceptual objects primitives make use of still other primitives
such as totes, the catalog can then be which performs system support functions for
organized and represented in terms of files (open, close, read, write). This provides
all the things that can happen to these a layering of information hiding in the CCIS
objects (e.g., format for display). software and in the catalog.

840

S-
"•o - S S

.... :::.

7k

RESUME,

J.W. (Jim) Winchester
Manager

Software Engineering & Technology Department
Software Engineering Division

EDUCATION
PhD, Computer Science, UCLA
MS, Research Methods & Evaluation, UCLA
BS, Applied Physics, Comell University

EXPERIENCE

9 years at Hughes ,
13 years total

HUGHES POSITIONS

Dr. Winchester directs an organization of 80 engineers and scientists tasked with conducting
research, development projects in software and system specification, design, and development
as ell as providing direct analysis support for engineering contracts. His department is responsi-
ble for the Hughes Software Development System; an integrated collection of computer aided
tools to support the development of software for large C?301 systems. His department also
develops specialized real time operating system and display software. His particular research
emphasis is in requirements specification languages and their relationship to the computer sys-
tem development life cycle. Previously he was Head of the Research and Analysis Section, lead-
ing software research and development projects in software specification, design metrics, test-
ing, and computer system simulation.

PREVIOUS ASSOCIATIONS

As ILt. U.S. Army, was Executive Officer of a Maintenance Management Detachment and
responsible as project director for the development of the Coscom Automated Maintenance
Management system (CAMMS). For 18 months directed 24 officers and men in the conceptu-
alization, design and development of this data based management system.

PUBLICATIONS

Papers for five ACM & NCC Conferences, 2nd International Conference on Mathematical
Modeling, the First Annual Symposium on Systems Development Technology and other profes-
sional symposia.

PROFESSIONAL ASSOCIATIONS & HONORS

Member of ACM, IEEE and Upsilon Pi Epsilon. Recipient of Howard Hughes Doctoral Fel-
lowship, Army Commendation Medal For Meritorious Service.

841

F

ui.

w

~LLI

w U)

842

w I-

uiJ
. C

mwLL U.JCOO

-ILL 0 W o>

01 0

Zm 0
0 0

LL7,
843I C

LU

0 0

U) J UL

o W 0

zU 2 LU w>)

N 0 ~0 zJ
oL 0 Iin

cc Z LLI LLI C
P- O OW 0>. 0L

04 C t)
cr.z z z z
o 000 0 z

LU LU LULU 0

844

. - '
LU

-0W

-I-.- -J ?On 0

_j~W lu X 0. 0a1"10

wL La.U

(A O) J Uzo~ I
0

Cw (a Ww Zi a

(AOLLIe~l1*;A- wU W

0 0 9w4

0.. o ZWC

00WI amO AO

z Zz zUC .E4L0C
Q >IM wA r---

CCZ<C4c00i
C) mxz

ju~ Z o AZw0aZc
ILcW (9=(LI-x ew I

Qz Z c3uw22 2w0
LU 4 w 4W a XZ U0 L

X. ,a mZ I- .5 O
W W WZ 000

LUU C C aZ C

ui m 0tL 845

0 UJ -J c UA LIZI
z ~ ~~~ 4 C1 U

- ~~~~~ ~ ~ ~ ~ . .b -. b- .L.' . * -V-. . . .

L0

w wo0

ILo

U

0 0l 2ii C)

m wm

diLZL

00

846

q.7.

0 0

LUm

Lz wU

0 w

847 ~ ow 1*

- - - - . --

I>

LIJZ
__ _ coae.

oJ MJ
00. iCL

C,,~ UjLJ) UU
>i

>->-

Ou.z
mJr0. COOZ

0 0 Z Z 0
C,0 oL 0

Ow Ow 0 LLW

z0 w 0 jL

848

_ _ _ _ _ L
0 LL ~LL 0U

0 LL LU Lw

LL~ uo

-U). U.IJLU >11Wzc

_ z
LU~L >1n .

0 02
* W - um L C

x0zo~ zW J0
0Z 0C

LL. wa~.. W Jm

z w01L U~lo O0.
_ U) U)u

_0 LULy

00

849

LU

wI-

Z 0m
U.0

Lu zo
0.

0 0Z 01-L

W .)) LUJ
Z ~LL

C/) ~L) L 0 . zo o
LL C) OL

0
00L

850

QLU

0o

zLuJ LU

Co 00" L
0U -z j

00 2 Lm OW
cr. 0 LL 1 2

LU Oz .. iI2

OILJ 0 LU

~COLU -

~LuLj
WLU LL

0 0 1'. 0

(U) 4

851

LI

z w

00 -C

_ _ _ _ ZLL
w 0 I- CM. w *

I- 0 IL
Z ~z 0

C) 0 0 C

aI Z U))

0ii
U) U. 0j

Uc N_ C.)U.

woL JLU ul Ji

N LU LU

IU. WCI) W

0 1 0L LW Zw uw
0. w

w LIJr

852U
LLJ L uj

.....................

Iw--

zU >
> z

LU z
U LU I

0 0 CL C

z ~~~UmmL

>1

LU~0 52
M (Lz 2 n .

Z 0 ~0
~LU 6 01 - c

0 0 uj z.w LL I
U)) (nL LU U LU Z .00 ~ 00 02 z I

Cl)U>
Lz 0 LU ~o 5Z (AL

cc 0 0jj c 0 0 0l I

853

>- >-

z z
4n44

I CC UA
LL, C

z 4.4

04(

U..A C
441

~ccc

UA w

O(D 0JCD CC3:
MU z

QN

*0 C 0 *

.. . . .)

. . . .>.. .. . * * .

.

77--

WORKSHOP PANELS

I. PART TAXONOMY/REQUIREMENTS

* II. INCENTIVES

III. LIBRARY

IV. SYSTEM DESIGN/INTEGRATION WITH
RESUABLE PARTS

* V. METRICS

855

GROUP 1

PARTS TAXONOMY AND REQUIREMENTS

aka "PARTS IS PARTS!"

Bets Wald, NRL
Bob Kolacki, NAVELEX
Bob Fritz, CSC
Kaye Grau, Harris
George Mebus, RCA
Lorraine Griffin, Ford Aerospace
Glenn Murray, CDC
Alan Blair, General Dynamics
Steve Huseth, Honeywell
Miguel Carrio, Teledyne Brown
Barrie Baston, MITRE
Mike Glasgow, IBM
Geoff Mendal, Lockheed

LL

:8: i::6::

856 "_--'...

ISSUES

1. Define forms and provide rationale for selection:

a. collection of source code, design, report, to performn a
function

resolution: definition and rationale are feasible
and acceptable for code level, less so for design,
and difficult and uncomfortable for specification level

b. individual items such as source code or document not
addressed, but feasible

* 2. What is to be included in each definition and what information is
needed for each of these items to reuse software at each level of the
definition.

Levels

Environment
Conceptual Specification PPS

Design
Logical Algorithms FDS
Physical Implementations PDS

3. SDS Issues

- DIDS applicable to reuse at high flow levels
- lADS modifications or alternatives
- information not in DoDS

not fully examined; needs further review

857

.

a. clletionof ourc coe, dsig, reort to erfrm a,--

REUSABLE SOFTWARE

Software reusability is the reuse of any information necessary
to the development of software systems.

Reusable software includes any software information that may usefully

be collected and used later to develop other software. K,

There are a number of levels of reusability.

At each level, the lowest reusable component is the PART.

With each part are necessary attributes that provide the
characteristics and other information needed for reuse.

Attributes differ for the levels of reuse.

Three reuse compositions are recognized:

intact - the part is used without change
parametric - the part is altered through parameters
tailored - the part is modified by means other than parameters

858Q

F. -1

"-'..

REUSABLE PART ATTRIBUTES

General: Name of Part/Version

Source/Date
Description: Intended Use/Not intended use
Warranty
Liability
Royalty
Compositional Properties

dependencies
usage options, intact/parametric/tailored
domain identification

Run time
target computer/os(exec)
implementation media

Requirements: Traceability information
Narrative Description: Including design rationale
Formal Description: PDL, formal semantics ,
Interface Specification: Type, mode. range, precision

Timing requirements
What and how

Quality, QA, Verification, Testing
Test reports, data, plans, tools, environment

Performance characteristics: actual target performance
Repair record: Version record, history of part
Notes: Comments, suggestions, hints
Existing implementations

THE ACTUAL PART

859

r,

ADA REUSABILITY ISSUES

Does Ada focus harm acquisition of other language parts?

- It is mandatory that other language parts be accommodated.
- Ada does not preclude mixed language part composition.
- There may be run-time incompatibilities or problems mapping

Ada to a ndw/sw configuration.
- Restricting languages restricts domains.
- Ada tasks/task model not universally reusable.

- Ada Reusability Style Guide needed.
- prevent misuse/misunderstanding of Ada features

- Ada generics are a weak reuse aid.
- Fixed point types have tricky reuse problems.
- Chapter 13 features, programs, attributes may not be reusable.
- Useful enhancements for Ada

package types
procedure parameters ... priority tasking

Ada was designed for portability, reusability is serendipitous.

What means are there to communicate Ada problems and
eliminate rediscovery?

.1

Ada board, Ada-info, Ada implementors, SISAda/Ada letters rr

860

. . .

-

OTHER ISSUES

Configuration Management
How many revisions?

-? Validation of parts
How?
How often?
Who?

Development of knowledge-based systems
- Development of application rules
- Development of composition rules
-Development of generation rules L

Definition and understanding of domain

Additional life cycle steps needed by reuse: "
- in reports/design
- after completion - identification and insertion

of result as reusable part
- other life cycle impacts
- alternate life cycles

Hierarchy of composition
part - component - package?

Other views of level

Reusability support tools and aids
- conventional technology
- M - knowledge based

861

o

•.

PARTS IS PARTS!

ALL THE PIECES PARTS
IS ASSEMBLED INTO ONE BIG PART

FUSED...

THEN THE ONE GREAT BIG PART
IS CUT UP INTO LITTLE PIECES PARTS,

AND

PARTS IS PARTS!

I V

rr

862

*.. . 7

-.- STARS Workshop on Reusable Components of Application Software

PARTS TAXONOMY and REQUIREMENTS WORKING GROUP
SUMMARY OF SESSIONS, 9-11 APRIL 1985 P.

Participants

Bets Wald, NRL, Government Chair
Robert Kolacki, Government Chair
Bob Fritz, Computer Sciences Corporation, Industry Chair
Kaye Grau, Harris Corporation, Session Recorder
George Mebus, RCA Advanced Labs
Lorraine Griffin, Ford Aerospace
Glenn Murray, Control Data Corporation
George Mendal, Lockheed Missiles and Space
Alan Blair, General Dynamics
Steve Huseth, Honeywell
Miguel Carrio, Teledyne Brown Engineering
Barrie Baston, MITRE
Mike Glasgow, IBM FSD

Charter

The Parts Taxonomy and Requirements (PTR) group was chartered to derive common
terminology, to derive specifications for access and composition, and to address a
number of related specific issues. These issues included:

%L VO a. Define terms and provide rationale for selection at the collection
and individual item level.

b. What is to be included in each definition and what information is
needed to reuse software at each level of definition?

c. How well can the SDS DIDs be used to guide reusability? How may
they be modified or appended?

d. What effect does Ada have on reuse? Does Ada focus harm reuse of
parts in other languages?

e. What are the most effective ways to communicate problems and fixes r
uncovered in Ada?

Issue - Definitions of reusable entities
Discussion - The PTR working group's discussion of definitions of reuse took most of the

allotted working time. Even with this effort, a definition was only partly completed.

The PTR group defines software reusability as the reuse of any information necessary to
the development of software systems. Reusable software includes any software informa-
tion that may usefully be collected and used later to develop other software.

It was recognized that a number of different levels of reuse exist, and that there are a
number of different compositions of reusable components.

863

number of attributes that provide the characteristics and other information for reuse.
Attributes differ for the levels of reuse.

The levels of reuse are abstractions of a solution to a problem. The least abstract level
is the physical level which is an implementation. The Program Design Specification is
currently used to describe implementations. The next level of abstraction appears to be
a range of abstractioc and was designated the logical level. The logical level ranges from
'designs" to "algorithms". The Functional Design Specification describes this level of
abstraction. At a higher level is the conceptual abstraction, a range of abstraction that
includes "specification" and "design". The Program Performance Specification is a docu-
ment developed at this level. Though it is recognized that there is a higher level of
abstraction that the working group called the "environment", what it is or how it may
be used is uncertain and requires further investigation. The levels of reuse are summar-
ized below. The boundary between conceptual and logical is fuzzy.

LEVEL ABSTRACTION DOCUMENT

Environment

Conceptual Specification Pgm Performance Spec
Design

Logical Algorithms Funct Design Spec

Physical Implementations Pgm Design Spec

In discussion, it was determined that understanding of reusability at the physical level is
best and development of methods to support reuse at this level will provide immediate I..-
benefit. As the level of abstraction increased the ability of the group to see how reuse at
these levels could be accomplished decreased. Higher levels of abstraction are the areas
of software and syst. engineering that are currently guided by experience and intuition
rather than well defined sets of rules, making tool support other than as documentation
aids difficult.

At each level, the reusable parts may be incorporated into a new system in a number of
ways, called compositions by the working group. The part may be used intact, without
change. Functions in a math library are examples of parts used intact. Parts may be
modified parametricly, as in Ada generics. Tailored parts are modified by means other
than parameters. Tailoring generally requires elaborate tools and metacommands that
alter the part.

Resolution - Definition of reusable entities is easible but complex due to the need to
describe reuse at a number of levels of abstraction. Reuse at low levels of abstraction is
understood and provides immediate benefit, but methods to reuse parts at higher levels
of abstraction must be developed.

Issue - Information needed in definition of reusable parts

Discussion - Attributes of reusable parts include information not now normally recorded.
The PTR working group was able to draft the attributes for a part at the lowest level of
abstraction. Some of this information should be included for parts at all levels of
abstraction, but at higher levels other attributes are probably needed. The medium of r
description for the various attributes is intuitive (though not necessarily optimal) for the

864

abstraction, but at higher levels other attributes are probably needed. The medium of
.. description for the various attributes is intuitive (though not necessarily optimal) for the

attributes of physical level parts. The description medium for the currently undefined
attributes at higher levels of abstraction needs to be defined. The reusable part attri-
butes for the physical level component are described below.

REUSABLE PART

General Information: Name of Part
Version
Date
Source of Part
Description: Intended use/not intended uses
Warranty
Liability
Royalty

Composition Properties
Dependencies
Usage Options: Intact, Parametric, Tailored
Domain Identification

Run Time
Target hardware and operating system (or exec)
Configuration
Implementation media: Sw, Hdw, Firmware or combo

* Requirements:
Original performance and function requirements
Traceability information

Host requirements: Development dependencies
Tools required

Formal Description: PDL, formal semantic description

Narrative Description: English prose, including design rationale

Interface Specification: Parameter type, mode, range, precision
Timing requirements
What and how

Quality: QA, Verification, Testing, Test Requirements,
Test Data. Test Plans, Test Tools,
Test Environment

Performance characteristics: Actual target performance, benchmarks

Repair Record: Version record- history of past
Problem tendencies

Notes: Comments, suggestions, hints
Existing implementations: This target, other targets

THE
ACTUAL :
PART

865

. - - - - .5 - ;-.v, .. , _ .. --...-. .- _ , .- -, , ._ .- .. - - .,

This is a draft and additional data may be required by retrieval systems or code
modification tools. The attributes are in many caes partially redundant. The redun- .. ",.
dancy may be reduced after more careful analysis.

Resolution - Describing the attributes of reusable parts is essential to the user oif reus-
able parts, to the parts developer, and to the parts management system. ASttributes of .
physical level parts can be enumerated, and may serve as the basis for attributes of
higher levels of abstraction. Defining the reuse attributes for higher levels of abstraction
is essential and requires additional research.

Issue - Ada and reusability

Discussion - The Ada and reusability issue has a number of facets, including reuse of
components created in other languages, communicating problems and fixes, and features
of Ada that promote or make difficult reuse of parts.

* Ada does not preclude reuse of software parts implemented in other languages at the
physical level. Ada was designed to interface with other languages, though by some
views this is a limited interface. A severe problem is that the pragma INTERFACE is
not a mandatory part of the language that is tested by the Ada Compiler Validation
Capability and thus is not implemented in many compilers. It is mandatory that this
pragma be implemented to provide this level of reusability. Additional pragmas may be
necessary to make Ada compatible with various run-time configurations and constraints.

It is mandatory that parts in other languages be accommodated. Restricting reuse to
* Ada language parts restricts the domain of applications and the potential for reuse.

Some Ada features may limit reusability. Ada generics are a weak reuse aid, and do not
supply the generality the name implies. The Ada task model is not a universal one for
concurrent systems. Use of representation specifications, pragmas, attributes, or other / L
features defined in Chapter 13 may limit reusability. Ada fixed point types have very

- tricky reuse problems based on the difference between the defined delta and the actual
delta generated by the compiler for a particular implementation. The generation of a
"Guide for Reusability with Ada" is needed to prevent the misunderstanding or misuse
of Ada features that can be used to promote reusability. _L

Ada was designed for portability. Portability is a facet of reuse (an intact or parametric
reuse of a physical component). Other levels of reusability based on Ada are serendipi-
tous. Enhancements that would increase the domain of Ada solutions to problems and
hence reusability include package types and passing of procedures as parameters. Pack-
age types would allow better description of abstract data types and allow Ada packages
to be used at a higher level of abstraction. Procedures as parameters would allow tasks
with dynamic priorities.

Resolution - Ada focus cannot preclude reuse of software components implemented in
, other languages. While some Ada features support reuse, a "Guiae for Ada Reusability"
" should be developed. Future versions of Ada should be changed to support reusability

by adding package types and procedures as parameters.
Issue - Do the SDS DID. support description of reusable parts? What could be changed
or added for better description?

Discussion - The SDS DIDs do not prevent use or description of reusable parts. They
were not particularly designed for describing reusable components, and there are prob- -
ably supplementary information that would aid reuse description. This issue was not
thoroughly discussed by the PTR working group.

866

.o . . , .".

.* ' .

Resolution - The SDS DIDs need to be examined in more detail in the next working
group session. Alternatives should be examined.

Other Issues - The PTR working group identified a number of related issues during its
discussions. The issues were only described and require careful examination by PTR or
other more appropriate working group.

Configuration Management: How many versions should be kept in a library? Suppose a
number of users have successfully reused a part that is later shown to have a bug, is the -
previous version invalid? Should the early version be kept? What if the new "corrected"
version does not work in the generated software?
Validation & Evaluation: Should parts be validated or evaluated or is it buyer beware?
How should validation or evaluation be done? How often should a part be validated and
evaluated; periodically or only when a new version is developed? How should version be .
defined? Who is responsible for validation or evaluation, the developer or an indepen-
dent agency?
Knowledge Based Systems Support. Tools using this technology to support reuse may
be a decade or more away. Three distinct sets of rules need to be developed; application e-
rules, composition rules, and generation rules. Application rules guide the production of
software for a particular application within a dome '. Composition rules define the
ways that reusable parts may be combined and changed. Generation rules guide the
automated generation of applications software from higher level reusable components.

* Domain: A more complete definition and understanding of domain is needed. Domain
affects the selection and composition of reusable parts but the degree and bounds of the
domains effects are not shown.

Life Cycle: Additional life cycle phases or activities are to be required to make reusabil-
ity part of the software engineering process. At the beginning of the lifecycle, in the
requirements, specifications, and design phases, there is a need to search for, acquire and
integrate reusable components. The process for doing this is dependent on a number of
outside factors such as government acquisition policy and library structure.

An additional reuse phase is needed after integration or delivery of a software product to
identify it or a subset of it as a reusable component. One software product may produce
one or many reusable parts at many levels. This identification of reusable components
will have an effect on many of the phases of the current life cycle.
There may be a number of as yet undetermined effects on various phases of the life
cycle. The current life cycle should be examined phase by phase to consider these
effects.
Alternate life cycle models may be possible or necessary due to reuse. This should be
considered as well. 0
Hierarchy of Composition. The part was arbitrarily identified by the PTR as the lowest.
reusable part, the software atom. It is apparent that there is a composition of parts to
produce other software entities, and some of these entities stand alone for reuse. A
hierarchy of composition should be established to describe these combinations.

867

.., . : . + . . + + , . .,• . -. , , . .. , + .. . ,

,..3.,--.-.

Reusability support tools and aids. Reusability will be futile if there are no automated
support tools and aids. Development of these tools and aids should be done on two
parallel paths. Conventional technology, such as database management systems, will
provide the most near and mid term support for selection, acquisition and insertion of
reusable parts in a database. Simple tools, such as command procedures, can be used to

* incorporate reusable components into systems. Elitors provide immediate capability for
. modification of source code parts. Initial reuse should focus on learning how to reuse

parts at the level of understanding we now There are some immediate applications that
show promise, but this technology will not provide the needed support for at least a
decade, probably longer. The turn of the century will probably see the first Al tools in
widespread use for software engineering. (AI technologies will probably be applied ear-
lier to a great many simpler, better understood problem domains before they are useful
in software engineering.) These tools should be viewed as long term developments.
These technologies will probably be essential to the reuse of parts at higher levels of
abstraction. At the current level of technology, Al/knowledge based tools and aids are
high risk and offer little immediate payoff.

868

-. -.

. .~ . - ~ 3 -:- , -.1.~. - -_____________________________

S--GROUP II
INCENTIVES

Marlowe Henne, Harris
Steve Strong, Naval Avionics Center
Thomas Arkwright, Lockheed
Joyce Mortison, Sperry
Norm Nise, Rockwell
Fredric Heilbronner, Advanced Technology.
Dan Haggerty, Boeing
Rodney Bond, General Dynamics

"4-"

869

.

- - - - - - - - - - .* *.l.'

-

INCENTIVES

ISSUE: "rclelTT, *

Proposal Evaluation Process

DISCUSSION:
Process currently disincentivizes reuse.

Lack of cost realism may be assumed.
Up-front costs may be disallowed.

RECOMMENDATIONS:
Include reusability

as part of evaluation criteria.
Properly evaluate as part of cost realism.
RFP to study the above.

L-,.''

L

870 .-.

.. "

INCENTIVES

ISSUE:
Should all RSW be incentivized the same?

T]

DISCUSSION:
Reusability may not be apropos at times.
Determine up front in contract.
Three services do not agree

on criteria priority.

RECOMMENDATIONS:
Government/Industry up-front study.
RFP to study criteria

and establish priorities.

871

INCENTIVES

ISSUE:
Effects of reuse on competition.

DISCUSSION:
Mandatory reuse may encourage obsolescence.
Contractor business posture may suffer.
RSW library may increase competition.

RECOMMENDATION:
RFP for detailed analysis of trade-offs.

872

... .

-- r-r- r--r:

INCENTIVES

ISSU1E: ,-

The Government's Posture.

DISCUSSION:
Positive posture needed.

RECOMMENDATIONS:
Strong DoD pronouncements.
Orientation of DoD program personnel.

8--

87_5

-. - - . -. - . . - - - i' '
-

. = r r_ -
.

INCENTIEVES

ISSUE:
Economic Incentives.

DISCUSSION:
Two Areas:

(1) Producing;
(2) Consuming.

Two methods to incentivize deposits:
(1) Dollars for producing.
(2) Dollars for consuming.

Will encourage high degree of reusability.

RECOMMENDATIONS:
Payment made when RSW part reused.
Incentives for tool use may differ.
Fund a study on levels required.
Study transfer of maintenance

responsibility to the library.

F.F

E r

874

/ . *

i°','

i INCENTIVES

ISSUE:
Contract types and clauses.

DISCUSSION:
FFP contracts encourage reuse.
CPFF (more common) tend to discourage reuse.
Savings-sharing encourages reuse if scope

renegotiations aren't invoked.
Contract clauses needed

for incentives (and metrics).

RECOMMENDATIONS:
Develop appropriate clauses.

S Modify DIDS (minimize documentation)

Encourage electronic media transfer (etc.).

'875

LK

.. . . - -- . . .' - . - - . - - .. .~ :. .h.. ,A s A- : :- - . :-. .. . ,

INCENTIVES S

ISSUE:
Warranties and Liabilities.

DISCUSSION:
Liability opposes depositing and consuming.
Some limit to liability appears wise.

RECOMMENDATIONS:
No unwarranted liability for depositors.
Problems from reuse are users' responsibility.
Develop contract clauses to protect

paid developers voluntary depositors.

81

876 •

.. ,...

.~, -.._":

VI-

00

I--

(I I 0.

0 0 j

,> 0 I-

co,

cc .

E~u~u *877

LU

LU z
U~

ZU

Ow U'

in 0 z.
W LU L -

z w
CL . uj LU I

UJ z 0 0 0

i .u I I

o 878

uEE~a LU -J i
pP 0

z z 0.I

0 2 ZI
z Z LU

a: 4UI
I- LL.dz 0 :u
LU L> o. co

0 ~ IA Zo
0. -oU
I- LU U L

(A >: t -

I.- LL.-

O LU LU iuz u 0z z

)u) 0 0 zF~1 LaLUi~ <

0 LU CLO ui

I- LU 0 u >
0~~ Cf.~ -z

LL 0.Li ~L
* Z-L L0

< 1 L< -JD
30 (A LUA

o- u jQ LU j LU <

ZI z LUWz U.

LU < LU LU z m-
ZU. 3 j -i j ONO

JU J~ CL - o a~ %,

<u 0in .< LU ZO LU
a. aZULU V)UIIILU~. LU LU LW Lo

nnn(<< U< L.-I I

ItiI 0 U S L

<. 0 L. L (

I.-...-

IL

0< 0
Cc x 0 U z z

wo z

-L >- u u 2

LUW LU 3

2 LU a

ca ;0 0
jL zz : 1% i

3: 0< L-

0- U M < %

LW ZLUL
LL 0 LU I - '~

0- ca U3 u 0 >L

*< a:~ 0 -- L
a: ~ UJWz

L0) Zrw U) U<

CLU .- 0 Z ow U
Z LU) Z

LAAL= _j L.u LL)

~fL>~ 0 >.

0 a:

0 zzz C U 00 w ~

-u 0w <- Z LU
< CL < a :) aLU

0i z- uj w (A i
og~~u U >.CCC

a.~ ZO 0LU ZU
60 0 P0La>

z j ul Lu (A : 880

(A w '* W~ w o***

-LU

LU <O1

U) 0 LU

0 LU 0 Ow 0

>o LU >)
LU LU. W(A LU

LU > Uu
0~ 1L - LU') -

C13 V)Z U -u(

O> ca UL ULU u

ZO= LU o.

_j g1 LU I---< z <1<

(A~ LU (U
-j -

U) Z 0.. I-
<. < ~ u- CL L U mlzUi z U z 0 .>-J

o~~L LU 0-<)
- adz WOW

*00 L LZ _j << N 0)w
0 -j 3: w~ ..LU

z U) . - -
LU w~- <O _j cr

0> 1-U) (

0~ 0 LU m 0 X

1 LU Z) Wn<-) 0:C
W0< 0 <U)Z

. U) Z U 0z)

ZO 00U

c o LU (3(W U

zI w - LU> zX <

0 z < 0A

/3 'ilil
uj u 0 L881

< o w L.
.

~~~~C D 0 Z \.Vv7 >*. , ~ .. %.....*.K Z-~;.::~.~ \



LU0

uj L < z <U (Au

:) Zn (A0 - ~ 4

* ~LU 3:nZIn < ~ L
< W U~ LU 0- AZ LUW

-~~ In0. 0- o
L z 0. z

LL. 0 Lu 4..

<< 0 LIn VIn ccU z..
z~ (AI I 0 - (AwU

z AU Z (ALU IL M. 3
<j 0 LU >0< Oj ZU <j Lw U

LU~U 0I 0: <z uj1a
LU CL > cc J

(A OLL U.. Lai o~
z Z LU CL IZz~~ ~ ~ ~ Z L 0( 0-

w U 0 A 0 U >U 0 <- u - I U <>
InU InC. < L i-2 L 0

0n 00In 0 Z 0
a~ I,] Z In o LU 00 In Z (An

> u0 n Lj Z In (A~
2UL 0 > z <- < In0

-z

< <0z z >1
% 1 In LU 00 w UC <(

OU LL LUU n
-j In LU z - 0n w 01 0

z~L Oz 0A
tLU < -j<I In J ILI

LL 0n z LU o. 0  u zn In
Inu- CC 0 LL

ZL 0 (A LU 0 <U LU L
U LU Z LU 3 0

<~ LL jlz - l J < 0 J
0 ZZ Z uI U Iz -i< LL

LU 0LU0 LLZ.: U 0 < L U0Z LU
<L >. 0 0 0 >L -

(A in n 0 n (A - 0 < Zz W 0-0 CL0(A (

w z z z Y U 0u(AI iz UWZ Z - 0:
LUn U Wi U 1 -  C0 w. 0L LU

<0 0 0

z z z(A 0 z z L zDP 882 - A 0 ZWL
4.L U z i L U i u

< LU > >- in 2 > 0 >



z
<Z 0 U

LU 0
WL

ILu U)<

0 <i 0 U

<I 0~ 0 0-

z >a
I- U). z

0 w0

zz
0 < 0 <

UEm LU :

cc 00 z 0
< Wz

* ii Uz < LU
CW z CZ.

CO) 0

Lw w~ zw

LIL

< <LU

I-U a V) w

- ~ 0<

00 0 0

uw 0 U CnnnS 0
< 111

liii!, z Z[U (
0 0~, 88



LA

inii g a
a U. z

w LUW

0.0

vi ~ zwo 0 j

0j >L1. wzU cc z
0 u (A- u 0

R t w 0 0 <0
C0 > Lu6

W A SZ L wL

Sc. >-w 0 0
z> 0Z~ 0

z 0

(> 2Wg a
I~cc < 0 20~

1*1 oACL < -w

u 4A LU zui

L U x I w-j a- z z
< U.

00

0 U c < A a0 L LJ

ZULA 3-0c zS U0

a00 0U 0

UA =



GROUP III

LIBRARY

885



U 
CU

I~
6-4

, I

o8



U~A -

COC

C.CC

04

* CI~ C)d

0 (25

* 887



-..-..... ,

INTRODUCTION

The Library Panel addressed repository issues associated with reuse: how reusable parts are
inserted into the library, how they are retrieved, and how they are maintained while in the "
library. These are extremely complex issues and in some cases the panel has recommended
further research before a particular solution can be selected. The panel has, however, determined
what functions the library should perfrom and, equally important, functions that the library
should NOT perform.

It is critical to decouple the library from other functions, such as software maintenance, in order
to keep costs reasonable and to focus attention on the basic capability the library must perform
to effect reuse. The library must make it significantly easier and cheaper to locate and retrieve a
part for reuse than it is to re-build that part from scratch.

88.

,,r-

-- "888

................ .. .-. .... ....

- .. .. .. ,Z..~. .. z:. ,2. .a..a2. a..S.Za-- - - .•.<.fl."3 k



** LAIIA I. LIBRARY MODEL

The panel developed a library model organized according to "levels of trust". It was recog-
nized that from a library users' point of view perhaps the overriding concern is how well tested
and documented or how reliable a part is. For example, parts currently being maintained within
a nuclear or space application would be placed at the most trusted level. Handy, but undocu-
mented, UNLX-like utilities would be placed at the least trusted level. There would be many
intermediate levels. Depending of the application, the library user could restrict his search for
parts to only the most trusted levels. The panel wishes to encourage reuse at all levels, with the
expectation that through extensive reuse, parts at less trusted levels may migrate towards more
trusted levels. Both the number of levels and the acceptance criteria to be applied at each level 4
on areas that require further investigation.

Whether the library itself is physically distributed or centralized should be transparent to
the user. Domain specific libraries are not recommended since there is significant overlap among
domains. This would lead to confusion over which library a user should search. A single, central-
ized facility is, therefore, recommended. atitr

A great deal of classified software and associated information is generated each year for the
DoD. Reusability in this area is especially critical, not only to reduce costs but also to increase
reliability. However, security procedures seriously hamper reusability by restricting distribution
of information. The feasibility for multiple, clasified libraries for reuse within and, to the extent
possible, across classified projects must be investigated.

- o-

r

%; 1

889

.



WHAT THE LIBRARY SHOULD DO

The library should be responsible for

acceptance of new items
cataloging
retrieval
configuration management
on-line error reporting
bulletin boards
archiving

The library should apply acceptance.
Criteria to insert each item or part at the appropriate trust level, but it should not be

responsible for screening out trojan horses or other types of potentially harmful parts. Certaintly,
if a harmful part is reported to the library, the library should take appropriate action to notify
users.

The panel strongly recommends that reusability not be limited to code. Designs,
specifications, algorithms, test plans and procedures, etc. must be considered reusable as well.
These items actually have the potential to effect larger reductions in cost than simple reuse of
particular software parts. Because of this, both the mechanisms for cataloging and retrieving
library items must be much more sophisticated than if software parts alone were to be considered.

Actual cataloging and retrieval mechanisms to be used are areas where extensive research is J.
required. The panel recommends that techniques currently in use in other fields (medical, chemi-
cal, etc. not limited to software libraries) be examined and automated abstracting methods be
investigated. Primary library access should be online, but other media must be available due to
expected volume of information.

Online error reporting should be supported by the library as well as a bulletin board facility.
Users should be able to query each of these facilities on the basis of individual parts of interest.

-.

890

L:,. I... ..



'.-' WHAT THE LIBRARY SHOULD NOT DO

Functions the panel felt the library should not be responsible for include:

o screening submissions for trojan horses, etc.
o software maintenance
o proprietary software or information
o subdividing contributed components for cataloging as lower
level reusable parts

The panel recommends that the library be kept distinct from other functions. Thus, the
maintenance of software of the library. This is not to preclude the government maintaining this
software elsewhere, for example, at the life cycle software support centers.

The library should not accept or distribute proprietary items. Legal issues aside, the library
should not become a marketing function for software vendors. This is not to preclude the library
containing pointers to proprietary packages to facilitate reuse. All information actually containedin the library, however, must be publically accessib'

891

-o.



AREAS OF RESESARCH

The library panel recommends research in the following areas:

o State of practice in library cataloging techniques
o State of practice in techniques in maintaining software

libraries
o Estimation of library sizing parameters
o Parts composition

New technologies make feasible?
o Submission criteria foe each library trust level._
o Establish standard measures of component performance, quality, etc.
o Description methods for component dependencies versions, etc.

i.

.

89. 2

892."



-A

U.

a.)

a.) ~p .

r.

'4.
.* d

0
r12a.) 4.
ri~gJb I

S-6

'~0
"0

"S

-a

4.
4.

893



K

* 0

I -

I-
.0

U-.

- -

-

~J I - . -
I 0

I -~* - I
_ p - ~I - Q

~ I

I - -

U ~0
- ~-

* -~ I --(.1.2
I C.C0 -

* -* - I -~
L. I

J* -**s*

r *,

-

* I -p

894
-p.

~ v ~ -



"-.

I .. ,..

-o --O°.

"* • .C.



* .. , -4~J

i-

1%, cd-

0pv

P-4.

rn -o M
ce0

cI:z.4

-I-) +D c

co "
-~C0

- ;~m I -~8-s -

> > 8-s

896(U



"0

I " a

-O 
C1. W -4

ca~~ "St

o Z

~A 0 
U,

~897



V1, - -.- - Imiur km TI 1.- 77---- VT i---7 -7'7--S7

CIO

4.."

~ ~lI

~1-4

~~cd

4.~'.2
ce I

I n-

SD CZ 0e%

-- 5-~ I - 898



17.

LIBRARY ISSUE I - C (con't)

Summary of Description Classes

Identification
Name Summary
Catalog Entry

Characteristics
Language Abstract
Machine Dependencies Performance
Author Side Effects
Ordering Information (if not on library)

Code
Source Object
Binary

Documentation
Requirement User Manual
Design Security
Maintenance Test: Plans, Proc., etc.

Usage
Compilation Info. Command Files
Dependencies

History
Revisions Problems
Usage Current Users
Notefiles (bulletin boards)

99

-- 7.-.

S. 5- '.- :-
. . . . . ... ~ ... ,-. ... *' * 5 .. . . . . . .. .... . ... '.. *5* *'.....5.



cdn

0d 0

>-

-% r

0'0

I I-i -A



*

0

0~

0
0

0

I I I 1
Q I 0

I I -~ ~0
I-- I- I

- .* I S -~

I rn
I ~.0

0
I Q ___
I Q -

CI) - 12"fl A *1
.- I __ .0

'V - I ~-a - -* ~< "-ec~I - .4-a - _

-~ - ~-qI S
0

0~:
~QI 1-2
~/~oi

L2

901

~~

**~%.**.**%~.* 2- * * * ~. . . -
S*~**** ** S ~ -~



J. W4.0 17.7.. 7. -V - *... - -

| |.

LIBRARY ISSUE III - F/G

What Soft of Cataloging Method Should be Adopted?

Factors Likely to Affect Choice of Cataloging are Search Mechanisms:

Sizing and Traffic Levels

Multi-Dimensional Nature of Parts Categories
Applications Domain
Type of Object

Domain Overlap

Need for Keyword/General Term Retrieval as well as
Attribute Searches

Availability of Automated Techniques for Abstracting
Parts Summaries, General Descriptive Terms and Keywords
Revisions and Variations

RESEARCH AREAS:
Existing Software Libraries (COSMIC)
Automated Library and Abstraction Facilities (Chem.,Legal,Med.)
Other Cataloging Schemes (ACM, CR)
Investigate Schemes Beyond Keyword Retrieval

,'oI

*90 :-



4-Z-

I - p-a

C.) 0

_ I-4

I s-z ,

I .J.

C'. n

'-~ C) .ct

- I 5-4 903



11 COO.

I h-

I- -4

--o

0 "Noo

I a-m

_ o -O

17 -

_ ~ -



IL 7i 17K.1w
o ho

w -'

.4Q I V -0

-e m
I.-

I0 >

*n M

ce 0 0

905



Loi

0 0

0 906



a.

* t.

'

* a.... =

• -p..

.1.

° '1 *

. -. . . -a . ....

a.- _: , # fY'C_,_. . - .; .-.. ,-', :.-.-.' .. :.:-...-.-, .- = _._._:,- ':..-_ x , . . . . -



IC - 11

- 99z

U- 46-~ * li

-.0 0 c

~ oto
cr, ccC1

0 .~ 908



a.L

CZ' LA. V) .

cc C,

(nna

.J. '2 K->

cA -C a

UU,

-jC

909I



~jg~c -- - .- ,..- - - -
--------------

-- . ~ -~
**b .~*

I-

'A

GROUP lY

SYSTEM DESIGN/INTEGRATION

p

I'

... ' .(*

b-b.
-S

K-

p

* S.. *4* 5..
*.p

911
1*

'-a ~*

V



STARS APPLICATIONS WORKSHOP

DESIGN / INTEGRATION PANEL

o."

9-12 April 1985

Co-Chairpersons

Industry: Elaine Frankowski, Honeywell
Government: Chris Anderson, Air Force Armament Lab

912.

P

r'

-'I-

p ~ *-~1.'- - %.,-.'



PANEL CHARTER

Develop Candidate STARS Projects Related to the
Design/Development of Reusable Mission- Critical
Parts and Their Integration into Mission- Critical
Systems

91



DESIGN/INTEGRATION PANEL MEMBERS

Name Representing

J.G. Snodgrass E-SystemsWilliam Wong National Bureau of Standards
John Da Graca, General Dynamics
Jim Winchester Hughes Aircraft
Daniel G. McNicholl McDonnell Douglas
Ron McCain IBMIRay Dion Raytheon
Nancy Ys. Kim Rockwell International
C. K Pian Hughes Aircraft
Gregg Van Volkenburgh Allied Canada, Inc.
Paul Hixson General Dynamics
E. J. Startzxnan BoeingIJ. RoderGT

ChritineYounblut Advanced Software Methods.M. Kemer Thomas General Dynamics
Vicky Mosely Westinghouse

914



915%



ASSUMPTIONS

Ada

Two Design Problems

Delivered Parts have Support """"

Sociological Problems of Reuse

Industrty-Wide Sharing is Far-Term

L

916..-

-F =



* -- ~ ~ .*M2'01r~rVIA. Kr H iV s -Ws-. z

ISSUES~~S. PRJCTM TW TO

Domain Anaysi

Part Devlopmnt ethoolog an

Part Usae Mthodlog

AutoatedPart Comositon Sstem

Librry~is) Lcatin Afect~) Pats Dsign

917,S



ISSUES / PROJECT MOTIVATION

F

Lack of Confidence in Reusable Parts

Characteristics of Reusable Software Parts

Techniques to Produce Reusable Parts

Tool Support for the Reusability Techniques

918

... I



STUDY TOPICS

DoD-STD-2167 (SDS) /DIDs

Structural Standards for Integrable Parts

Mechanisms for Interfacing Components

System Level Decisions /Software Reuse ..

Very High Level Languages

919

... , . .. . . . . . . . . . . . . . .

*..*-.*. *%** ... ....

p . .... °.-...



CANDIDATE PROJECT SUMMARY

1. Parts Methodology

2A. Horizontal Domain Identification
2B. Horizontal Domain Parts Development

3A. Vertical Domain Identification
3B. Vertical Domain Parts Development

4. Software CAD/CAM

5. Software Reusability Demonstrations

6. Parts Certification

7. Parts Technology Showcase -

9-2

920 ,.

fr"



: PROJECT SCHEDULE

F7_

9 A 4.4'

1921
0 i  :

*~p *p-

i'921



PARTS METHODOLOGY STUDY*
(PROJECT I)

OBJECTIVE

To Identify a Compatible Set of Parts Reusability
Methods Spanning the Domain Analysis, Parts
Development and Usage

e. *-.

*To be Sponsored by STARS/Methodology

922

. .o.9**



DOMAINS

VERTICAL-=

MISSILE AIRCRAFT 02
NAVIGATION FLIGHT TRACKING

CONTROL

-~~~ - ----

1/O STO kE A NMONOUS
MOA EMENT 'CO MOL STRUCTU S

HORIZONTAL

923-



.7. ~. - - '7. -. ~ ~.. ~ ~ ~-i -. - -K 7 t~... .

K 'CZ':-

HORIZONTAL DOMAIN IDENTIFICATION

OBJECTIVE

To Identify Domains within DoD Mission-

Multiple Application Areas (Horizontal Domains),

in which Reusable Software can be Developed

F F



HORIZONTAL DOMAIN PARTS DEVELOPMENT

PRJC 2B)

OBJECTIVE

To Identify, Specify, Construct and Test
Parts from the Horizontal Domains

Award Multiple Contracts to Demonstrate
Various Parts Development Methodologies

925

FF



VERTICAL DOMAIN IDENTIFICATION Q

(PROJECT 3A)

OBJECTIVE

To Identify DoD Mission - Critical
I Application Families (Vertical Domains)

in which there Exists
a High Degree of Reusability,
a Significant Life Cycle Cost Savings,

I and an Opportunity
for Critical Expertise Propagation

926



VERTICAL DOMAIN PARTS DEVELOPMENT
(PROJECT 3B)

OBJECTIVE

To Identify, Specify, Construct and Test Parts
within Vertical Domains

Award Multiple Contracts to Demonstrate
Various Parts Development Methodologies

I927



SOFTWARE CAD /CAM
(PROJECT 4)

OBJECTIVE

Investigate, Develop /Demonstrate Software
CAD /CAM Technology as it Relates to
Software Parts Development

Explore Role of Expert Systems..

928



7~ JW

SOFTWARE REUSABILITY DEMONSTRATIONS
(PROJECT 5) -

OBJECTIVE

To Develop a Mission - Critical System
(Sub- System) from an Identified Vertical

Domain using Parts from the Horizontal and
Vertical Domains.

Award Multiple Contracts to Demonstrate Parts

Usage Methodologies Identified by the STARS/

Methodology Project.

929

................



PARTS CERTIFICATION I-

(PROJECT 6)

OBJECTIVE

To Develop and Demonstrate Methods for
Certifying Software Parts

930



77 T

PARTS TECHNOLOGY SHOWCASE
(PROJECT 7)

OBJECTIVE

To Establish a Showcase Demonstrating
Parts Classification, Certification,
Library Cataloging, and
Evolution / Maintenance Procedures

931

. °

. . . . . . . . . . . . . .. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .. . . . .



-Y -ILE-,,

C.) r.. E-4

z ..

oo0 0

z ,

E.-4

or

Cn..

~E-4

* -n

>*-. . C



DESIGN/INTEGRATION PANEL REPORT
Elaine N. Frankowski -

Christine M. Anderson

May 15, 1985

Executive Summary

During the past ten years the DoD (Department of Defense) has become increasingly sensi-
tive both to the critical role that software plays in defense systems and to the software crisis fac-
ing DoD contractors. This crisis, caused by current software development methods, is manifested
in rapidly escalating costs, schedule delays, and reliability problems. The defense needs of the
1990's and beyond will not be met if software continues to be developed line-by-line. Reusable
software must be a part of any solution to this growing sctware crisis.

The primary emphasis of the April 1985 STARS Applications Area Workshop was reusable
software. The objective of the Design/Integration Workshop Panel was to develop a set of candi-

* date projects which would result in a robust reuse technology for mission critical systems. This
panel recommends seven STARS projects, ordered in time to ensure robust, transferrable, reuse
technology (see Figure 1). These projects are:

(1) Parts Methodology Study
To identify a compatible set of reusability methods for domain analysis,
parts development and parts use.

L. (2) Horizontal Domain Identification/Parts Development
(a) To identify domains within DoD mission critical applications which
span multiple application areas and for which reusable software can be
developed; (b) to identify, specify, construct and test parts from these
horizontal domains (See Figure 2)

(3) Vertical Domain Identification/Parts Development
(a) To identify relatively independent DoD mission critical application
families in much there is a high potential for reusability, a significant
opportunity for cost savings and/or an opportunity to capture critical
expertise in solving complex problems; (b) to identify, specify,
construct and test parts from these vertical domain. (See Figure 2)

(4) Software CAD/CAM
To investigate, develop and demonstrate graphic support for software
development similar to the graphic support that so greatly enhances
the hardware development process.

(5) Software Reusability Demonstrations
To develop a mission critical system or subsystem from a vertical
domain using parts from the horizontal and vertical domains identified
in Projects 2 and 3.

(6) Parts Certification
To define and demonstrate the parts certification process needed for
process needed for parts that will become part of a high quality
reusable library.

933

777



. . -" . %1. 7T U .>Ltr -LF .. . . . . -. • - _", . t _.- _ " - . Vrj-A ~ vr.. -Ct .v. t,*p . ...
"

.. a i

(7) Parts Technology Showcase
To establish a showcase demonstrating parts classification,
certification, library cataloging and evolution/maintenance procedures.

'V..

o .

-. 1-

934

:: II

... *.,*.*..*.-,.°%*-**]



1. Introduction language of choice for reusable source
code, since the DoD mandates it for mis-

The primary emphasis of the April 1985 sion critical software. In addition, Ada
STARS Applications Area Workshop was can be used to represent designs, and as
software reusability. Reuse of software parts a notation for documentating interfaces
such as source code, designs, test data, docu- and other information about reusable
mentation, and object code, can shorten the code. This fact does not, however,
mission critical system development schedule, exclude other languages from being nota-
leading to the cost savings inherent in on-time tions for reusable parts where those
system delivery. However, software parts languages are demonstratably more
reuse must be supported by reuse technology, appropriate since it is the prescribed
Reuse technology includes methods and com- language for mission critical software.

*" puter automated supoort tools both for
developing reusable parts and for integrating (3) We recognize two design problems; the
them into mission critical systems. This tech- design of parts and the design of applica- L '
nology must be developed, tested and tion systems that are composed or parts.
transferred to the contractor community. In addition, we recognize that these

problems have equal weight; both must
The objective of the Design/Integration be solved in order to develop mission

Workshop Panel was to develop a set of candi- critical software with reusable parts.
date projects which would result in a robust
reuse technology for mission critical systems. (4) We recognize that reusable parts must
This panel recommended seven STARS pro- be engineered; not every software com-
jects, ordered in time to ensure robust, ponent that exists today or that will be
transferrable, resue technology (see Figure i). developed in the future will be reusable.
The proposed projects address needs that were Retrofitting existing software for reuse
identified in previous reusability studies may be prohibitively expensive and/or

7 rIEEE84]. The most recent of those was the infeasible. Therefore, we are recom-
NSIA organized industry study on C31 mending projects to develop techniques
software resuability [MORTISON84I. for producing reusable parts; the tech-

niques may produce reusable parts from
This paper is arranged as follows: Sec- scratch or by modifying existing parts.

tion 2 discusses the assumptions underlying However, we are not specifically recom-
the panel's deliberations. Section 3 reviews mending the development of techniques
the design/integration issues that motivated for retrofitting existing software for reu-
the project definitions, and other issues impor- sability.
tant enough to merit study. Section 4
described the seven STARS projects that the (5) We recognize that the sociological and
panel recommends. Section 5 summarizes the technology transfer problems of software
effects of accomplishing the recommended reuse are as important as, and perhaps
work. Section 6 lists the panel members. more difficult than, the technical prob-

2. Asuuptions lems. Therefore, we are recommending
projects whose success will provide

These are the assumptions that underlie technical grounds for increasing people's
the issues identified and the projects recom- willingness to reuse parts and, confidence
mended. in the parts they reuse.

(1) Every delivered part has support: for (6) We recognize current reluctance to reuse
example, code is supported by documen- parts within the same company, even Li
tation, a design, test data, and so forth. within the same division, the same
When we discuss a reusable part we are department or the same section. There-
discussing the part and its supporting fore, we think that a library of parts
elements, shared among entire industries is at least

twenty years away and propose this
(2) Wherever feasible, Ada is the language scenario which leads eventually to that

of reusable parts. Ada is obviously the inter-company parts sharing.

935

......-... ....... .... .... . ... ... .. . . .. .,,,- ,... ., .. . ._ .,.,,, j..,. ,- . . ,:, ..,.. -



o STARS supports the development of reusa- that individual tools, supporting individual
bility technology - design methods, tools, and techniques, will be applicable in a variety of " "
the like - and offers that technology to total methodologies.
defense contractors;

The first phase of the program is a study
o Contractors use this technology to develop that identifies the characteristics of reusable

reusable parts and reuse them internally; software parts. These characteristics need to ,P,
be known so that the proposed methodology NP

o STARS or the DoD acquires some of this will lead to producing parts which have those
reusable software and make it available in characteristics and are, therefore, reusable.
some way that promotes sharing among con- The study is undertaken assuming that we
tractors; know what a "part" is and that we have col-

lections of reusable and non-reusable parts to
o Eventually contractors reuse software that study. The work consists of studying reusable
has been made commonly available, and non-reusable software components in light
3. Issues of the standard software quality characteristics

called out in DoD-STD-2167 (SDS) and other

These issues motivate the projects sources and, determining which of these

defined in section 4. Section 3.1 presents the characteristics make a part reusable.
issues that led directly to the project
defintions; section 3.2 discusses issues outside In the second phase, a software
the proposed project framework. methodology(ies) will be selected (perhaps an

RSIP (Reusable Software Implementation
The confidence problem cited in the next Plan) [GRABOW84 recommended methodol-

section is an umbrella issue that subsumes all ogy) and modified to include techniques that
the individual questions. Each of the projects produce high-confidence reusable software
proposed in section 4 provides another techni- arts, as defined by the characteristics
cal method or tool for the eventual high- identified in phase 1. We expect that the
confidence methodology. techniques will put special emphasis on valida-

3.1 High-Confidence Methodology tion, testing and certification, and that reusa-
bility metrics will be defined or adopted. The

The sense of this workshop was that one methodology will be developed by experiment; *..

_*" of the major barriers, perhaps the single most prototypes of needed support tools will havep. ...
" serious barrier, to software parts reuse was the to be built to adequately test the methodology

lack of confidence one industrial user would under development.
have in another's reusable software parts. To
overcome that confidence gap, we recommend The final phase of the project will
a study and implementation program to recommend the tools needed to support the
develop a methodology for producing "high- methodology. We envision a companion pro-
confidence parts." ject to develop these tools. In the companion

project, the highest payoff tools will be
We recognize that companies have or developed first, and all tools will be insertable

will develop individual software development into the SEE.
methodologies, and would not accept one 3.2 Issues that Merit Study outside the
prescribed methodology. However, those 3.2 "

methodologies can benefit by incorporating Project Framework
techniques (and their supporting tools) that Issue:
specifically promote developing reusable Are the concepts and terminology of DoD-
software parts. The High-Confidence Metho- STD-2167 (SDS) and its accompanying Data
dology Project will develop a parts develop- Item Descriptions (DIDs) applicable to reus-

. ment methodology, some support tools for the able parts technology?
techniques that comprise the methodology.
and a collection of reusable parts. However.
its major product will be the techniques that (a) Study SDS/D[Ds in light of the reusability '
promote reusability and the individual tools characteristics identified in the study phase of

* that support those techniques. We assume

936

No' o%



the High-Confidence Methodology Project. (b) Issue
Modify SDS/DIDs to reflect reusability con- Very High Level Languages (VHHLs) address
cerns. the needs of application specific domains and

Issue: have proven themselves effective in increasing
If the long term goal of the reusability project software generation productivity, in some
is an inter-company library of reusable parts cases (e.g., test generation with ATLAS) by
structural standards for those parts will have allowing an application specialist to imple-
to be very detailed so that parts will be integr- ment software without a software specialist, in k
able. Standards will have to meet both other cases by improving the software
design/integration goals and library goals. specialist's productivity. This workshop has

excluded VHLLs from consideration, whereas
Recommendation: the STARS workshop held at Raleigh, N.
Interface with the library panel. Carolina in February 1983 saw it as the co-
Issue: equal of reusability.

Only with something to "glue" them together Recommendation:
will parts be reusable. For real time systems, Do not limit the STARS Application Area to
glue candidates are the scheduling algorithms conventional concepts of reusable concepts of
and executives that both provide a computa- reusable components. Include VHLLs.
tional model and control the software in exe- 4. Projects
cution. For mission critical systems which do
not have the stringent timing constraints This section presents the seven projects pro-
characteristic of real-time systems, glue candi- posed for STARS funding. The project
dates are the Unix pipe/filter pattern, pro- definitions are responses to the key issues dis-

* cedure files, or editor scripts. In every case, cussed by the Design/Integration Panel, and
there is a need for some mechanism for inter- presented in Section 3. For this discussion, we
* racing components. One attribute specified for define vertical domains as mission critical sys-i every component in a library should be its tems or subsystems such as missile navagation,evecdninterface mechanism. aircraft flight control and command and con-

trol tracking; and, horizontal domains as func-
" Recommendation: tional areas such as input/output, asynchro-

" A study to define some promising interface nous control structures, and storage manage-
mechanisms for each type of mission critical ment that cut across a large number of verti-
software, so that a part's specification can cal domains. (See Figure 2)
include its assumed framework. Project 1

Issue:
Parts Methodology Study. The objective ofHow can system level decisions affect this project is to identify a compatible set of

(encourage) software reuse? How does parts-reusability methods for domain analysis,
software reuse impact system level decisions? parts development and parts use. The Panel
Recommendation: recommends starting this study before the

A study aimed at identifying heuristics to domain analysis/parts development efforts
guide system engineers in allocating func- described in Projects 2 and 3 so that metho-
tionality among people, hardware, software dologies identified in this study can be used
and special electronics, with an eye to reusa- and evaluated in those projects. The Panel -

bility. The study will assume: further recommends that the STARS Metho-
dology Area Coordinating Team sponsor Pro-

(1) some inventory of reusable parts, such as ject 1.
an inventory comparable to the one Project 2A
identified by CAMP (Common Ada Mis- "'"
sle Packages. Air Force contract Horizontal Domain Identification. The objec-
F08635-84-C-0280); tive of this project is to identify domains e

(2) that the inventory arises in an ongoing within DoD mission critical applications which
span multiple application areas (horizontaldevelopment project. domains) in which reusable software can be

937

- . ... . . ....... . .. . . o



%t

developed. objective of this effort is to develop a mission
Project 2B critical system or subsystem from an identified

vertical domain using parts from the horizon-
Horizontal Domain Parts Development. This tal and vertical domains identified in Projects

project is a follow-on to the previous effort. 2 and 3. These mission critical systems may *.

The objective is to identify, specify, construct be selected from developing or inventoried
and test parts from the horizontal domains, defense systems. Typically, they will be

The panel envisions that several contracts will objects of other research activities, but may
be awarded in order to apply and evaluate also be subsystems of operational systems
several parts development methodologies (e.g., F-15 flight control). Several contracts K.,
identified in Project 1. The panel recommends will be awarded in order to apply and evaluate

that this be a joint effort between the STARS different parts usage methodologies identified

Application and Methodology areas, with the n Project 1.
majority of funds coming from the Application Project 8
area.
Project 3A Parts Certification. It is assumed that during K.

development a part is thoroughly tested.

Vertical Domain Identification. The objective However, before a part is accepted into any
of this project is to identify relatively indepen- library certification must be performed in
dent DoD mission critical application families order to ensure only quality parts are
in which there is a high potential for reusabil- accepted. The objective of this effort is ton
ity, a significant opportunity for cost savings define and demonstrate the parts certification
and/ar an opportunity to capture critical process. Defining a parts certification process
expertise in solving problems in a complex includes quantifying the characteristics of a
domain. The identification process includes "quality" part. The panel envisions that this
some degree of analysis to justify the R&D effort will be jointly managed by the STARS
value of the vertical domain selected. Applications and Measurement areas, with the

majority of funds coming from the Applica-
Project 3B tions area.

Vertical Domain Parts Development. This Project 7
project is a follow-on to the previous effort. P ca.t
The objective is to identify, specify, construct
and test parts from the vertical domain. The this effort is to establish a showcase demon-
panel suggests that multiple contracts be strating parts classification, certification,
awarded so that each contract applies a library cataloging and evolution/maintenance
different parts development methodology procedures. It is envisioned that this showcase
identified in Project I. The panel sees this as will be incorporated into the "Software Fac-
a joint effort between the STARS Application tory" at the Software Engineering Institute.
and Methodology areas, with the majority of 5. Summary
funds coming from the Applications area. The path to adaptable/reliable mission

Project 4 critical systems made from reusable parts

begins with "high-confidence" certifiable parts.
Software CAD/CAM. Graphic/pictorial The technology ele- ments leading to "high-
representations enhance the hardware develop- confidence" parts are:
ment process greatly. The objective of this
effort is to investigate, develop and demon- o domain analysis of mission critical vertical
strate a similar graphic support capability for domains and high-payoff horizontal domains.
the software development process. Tech-
niques, such as expert systems, that may o definitions of the quality and performance
enhance this capability will also be explored, characteristics required of reusable parts,

Project 5 o a tool supported, "high-confidence" parts
development methodology &'

Software Reusability Demonstration. The

938
;6.-:.*



o parts certification methods,

The construction of high quality
software systems from those parts requires:

o a tool supported methodology for parts use,

o system construction tools,

o libraries of certified parts.

o very high level languages to specify systems
composed of parats

The projects recommended by the
Design/Integration Panel are arranged chrono-
logically to support the development of the
needed technology, and attack the key issues
identified as technical barriers to constructing . ."
adaptable/reliable systems from certified
"high-confidence" reusable parts today.

9..

. ~939 "-.

4. * ... - . .. *- - . . . . . . . . . . . .



S. Design/Integration Panel Members

These are the participants in the STARS Applications Area Reusability Workshop's
Design/Integration Panel.

NAME AFFILIATION

Elaine N. Frankowski Honeywell, Inc. (Co-Chair)

Christine M. Anderson Air Force Armament Lab (Co-Chair)

J. G. Snodgrass E-Systemns
William Wong National Bureau of Standards

John Da Graca General Dynamics
Jim Winchester Hughes Aircraft

Daniel G. McNicholl McDonnell Douglas t,,

Ron McCain IBM
Ray Dion Raytheon

Nancy Ys. Kim Rockwell International

C. K. Pian Hughes Aircraft

Gregg Van Volkenburgh Allied Canada Inc.

Paul Hixson General Dynamics

E. J. Startzman Boeing
J. Roder GTE

Christine Youngblut Advanced Software Methods
M. Kemer Thomas General Dynamics

Vicky Mosley Westinghouse

7 References

[GRABOW84 Paul C. Grabow, William B. Noble and Cheng-Chi Huang, Reusable Software
Implementation Technology Reviews, Hughes Aircraft Company Technical Report N66001-83-D-
0095 FR 84-17-660 RevA, December 1984.

IEEE841 IEEE Transactions on Software Engineering, Vol SE-10 no. 5, September 1984.
'MORTISON84 J. E. Mvortison, Systems Engineering Aspects of Software Reusability, NSIA
Study Task ISTG 84-2, Slide Presentation to appear.

- -

940--.,



Project I
. I initial I
-. methodo- I
.-. I logies IP--------4-------------":I -I

I I Resulting I Projects
Method- r I 2 I
ologies .....-> 3 ,

e I 4 -
S< .- I 5 I-.

I f I 6 1
In i 7 I,

i.
le

V ------------- -------------
time

FIGURE 1: Timeline for the Design/Integration Projects

VERTICAL ---------------------------

Missle Aircraft C2
Naviga- I Flight I I Tracking :
tion Control "--

I ...I I ""
------- ----------------- --------- --------- ------------

I Storage II Asynchronous I
I/O _Manage- I Control I

ment Structures
---------------------------------------------------------------------

--------------------------------------HORIZONTAL

FIGURE 2: Vertical and Horizontal Domains

. 9'.".

941



. . . . . . . . . . ... .T W I- 'W I "

GROUP V METRICS

Tom Bowen, Boeing
Jerry Brown, US Army
Toni Shetler, Systems Engineering
Lyle Anderson
Cheng Huang, Hughes
Fred Rosene, Communications System
Ragha Singh, NAVMAT
Jim Kirkpatrick, Air Force
Arny Engelson, Grumman
Ted Taylor, Effective Software

943

P'~p ~ *P~~~ p. p* ~ p *~pP- \." '.



METRICS

1. RECOMMENDATIONS

a. DEVELOPMENT OF PARTS* TO BE REUSED
b. USE OF REUSABLE PART
c. RELATED ISSUES

2. QUESTIONS AND RESPONSES

3. WORKSHOP INPUTS

* - Scope of Term (reusable) part -includes requirements,
design, code, architecture,...

944

.1:



Table 4.1341 Ufeca of Crteris as Software Quality Facto.

cooYcm W400MAM MA

C~~~~ w. 00.Uaaa

* I I S V L C A

£~~~ 11 V .a L

V~~ a I S v

L 1

a 46

4

*NO 0c'in au
~ a -

aa

c WJm rpl

4945

~ICA1 ~ in~ -£ 1..



A .J. - ---"

La.DEELPMNTOF PRTSn1. TO BE RESAL

CHARACTERISTICS

o Start with characteristics (criteria) identified in RADC quality
framework (e.g., modularity, generality) .

o Consider factor interrelationships r

METHODOLOGY

o Use of specification & evaluation methodology for acquisition of
reusable parts (see 2167/SDS)

o Start with RADC methodology & procedures -

MEASUREMENTS
o Start with RADC metric worksheets & software evaluation reports of STARS

measurement DIDs.
Refine/Tailor for Ada/Validate

o Add descriptive information (known to developer)
(e.g., language, host processor, cost, validation, speed size).
Select items from STARS measurement DIDs.

Note:

o Other relevent sources - Ada E & V, SEI, KIT/KITIA,....

Considerations:

o For all levels of abstraction
o Development products should contain information for measurements

946

.. . . . . ... ~~~~ -1.. . . . .~. -

4
-.-: .-.



• ".:. Lb. USE OF REUSABLE PARTS :'.
Start with items from STARS measurement DIDS and develop part characteriza-

tion, include:

" o Development information
(language, host, cost, validation, test information, requirements information)

o Quality levels ...

(e.g., High reusability, medium efficiency)

o Functionality (overlap with taxonomy)
(What it does)

o Operational characteristics
(Documentation, execution speed, ..

o History (some items related to c.m. & incentives)
(originator & reputation, cost (develop & reuse)
(estimated & actuals), schedule, testimonial, number of requests & uses,
degree of validation, change history, test drivers/data & results,...)

o Interface
(Relationship between environment invoking the part and functions
performed by part; and characteristics that are asserted by the
developer to remain constant - even in improved versions)

Note: Insure accessibility of parts - user will search by needs.

9.

€ ~947..."

.. . . . . ...-....'..t'*..., -..**....



1.c. RELATED ISSUES 5".-y

LIBRARY
o Maintain all (?) old versions

o Access 'versatility (adjustable "black box" view)
should users be able to search/evaluate parts from different
perspectives (shift level of detail)? - Y/N

INCENTI'VES

o Tie developer to maintenance costs. (How?)

o Developer royalties fro actual use! (Details?)

o Reward $ Savings due to reuse. (How?)

o Contractor incentive for reuse is better competitive (bid) position.
(Except Sperry).

4

948

.. . . . . . . . . . . . . . ....



"-""WORKSHOP INPUTS

.. o It would be useful to create scenarios for various types of
* users in order to provide a relative evaluation of these

recommendations. This analysis might also provide a priority- scheme for
the recommendations.

o Group V feels that is would be beneficial to allot more
* inter-group and intra-group communication time.

- o assumptions
-* o redundant discussions

o related issues

L

949

4t** . * *f * * . .. .* ..* , *.-• * . ** . *. * . . . .




